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Abstract

We study the instrumental value of conceptual knowledge when making statistical decisions.
Such knowledge tells agents how unknown, payoff-relevant states relate. It is distinct from the
statistical knowledge gained from observing signals of those states. We formalize this distinc-
tion in a tractable framework used by economists and statisticians. Conceptual knowledge is
valuable because it empowers agents to design more informative signals. It is more valuable
when states are more “reducible”: when they can be explained with fewer common concepts.
Its value is non-monotone in the number of signals and vanishes when agents have infinitely
many signals. Agents who know more concepts can attain the same payoffs with fewer signals.
This is especially true when states are highly reducible.
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1 Introduction

Humans use mental models to make sense of the world (Johnson-Laird, 1983). The building blocks
of these models are “concepts”: mental representations we use to describe objects in our environ-
ment and how they relate (Murphy, 2002). Understanding these relationships empowers us to use
information about one object to draw inferences about another (Mitchell, 2021).

This paper studies the interaction between (i) the conceptual knowledge embedded in mental
models and (ii) the statistical knowledge inferred from data. We ask: when and why is conceptual
knowledge instrumentally “valuable”?

For example, suppose a farmer wants to learn which fertilizers to apply to his crops. He views
fertilizers as “black boxes,” knowing that they help crops grow but not why. He does not know
how fertilizers’ effects relate and cannot extrapolate one from another’s. So when he tries different
fertilizers to learn their effects, he has to try them separately.

Now suppose the farmer knows fertilizers supply nitrogen, a nutrient that helps crops grow.
This tells him how fertilizers” effects relate: they share a common “nitrogen component.” He can
use this component to extrapolate one fertilizer’s effect from another’s. Moreover, when he tries
different fertilizers to learn their effects, he can combine them to isolate the nitrogen component.
This is better than trying each fertilizer separately because it allows him to learn their effects from
one trial rather than many.

Nitrogen is a mental construct: the farmer cannot see it. All he can see are the effects of trying
different fertilizers. But his conceptual knowledge of nitrogen allows him to learn more efficiently.
It empowers him to run trials that are more informative and instrumentally valuable. How much
more valuable is a quantity we define and characterize in this paper. We call this quantity the “value
of conceptual knowledge.”

Quantifying this value is important for designing interventions that give people information.
In empirical work motivating and guided by this paper (Sankar et al., 2025), we experimentally
study the effect of providing farmers conceptual knowledge about fertilizers. We compare farmers
given knowledge and data to farmers given data only, and find that farmers given knowledge
make more accurate predictions and more profitable decisions. These results provide empirical
support for the theoretical predictions made in this paper. The results suggest a way to improve
interventions that give people data: we should also give them conceptual tools to interpret data.
By explaining how these tools work and quantifying their value, this paper helps in designing
interventions that improve people’s lives more cost-effectively.

Quantifying the value of conceptual knowledge is also important for comparing human and
artificial intelligence (AI). Humans currently have an edge in using concepts to unite seemingly
unrelated phenomena: Newton isolated a concept (gravity) that unites apples falling on earth
with the orbits of other planets; Watson and Crick isolated a concept (DNA) that unites crime scene
investigation with the origins of domesticated rice; Bernoulli isolated a concept (risk aversion) that
unites choices in poker with choices between insurance policies. These and other concepts allow
humans to learn from limited data (Tenenbaum et al., 2011). In contrast, Al relies on recognizing



patterns in large, rich sets of data (Goodfellow et al., 2016; Halevy et al., 2009). By understanding
what conceptual knowledge is, and when and why it is valuable, we can better allocate inferential
tasks between humans and Al

Contributions This paper makes three major contributions. First, we formally distinguish two
types of knowledge: statistical and conceptual.! Statistical knowledge comes from observing pat-
terns in data; conceptual knowledge tells us how data are generated and what patterns to expect
ex ante. We formalize this distinction in a tractable framework used by other economists and statis-
ticians. This framework gives us a transparent model of how statistical and conceptual knowledge
interact. We use this model to derive theoretical results that make testable predictions, refine our
intuitions, and clarify the mechanisms through which humans learn.

Second, we use our framework to define and characterize the value of conceptual knowledge.
Our definition builds on that for the instrumental value of information (Howard, 1966; Raiffa and
Schlaifer, 1961): whereas information is valuable because it leads to better decisions, conceptual
knowledge is valuable because it leads to better information. We quantify how much better and
explain how this quantity depends on exogenous properties of one’s decision environment. This
builds on previous work comparing the values of information (e.g., Blackwell, 1951, 1953; Whit-
meyer, 2024) by clarifying the forces that make information more or less valuable.

Third, we use our framework to formalize what it means to have “deeper” conceptual knowl-
edge. This allows us to compare the marginal values of having deeper knowledge or more data.
It also identifies conceptual knowledge as an economic good one may acquire in the same way
data are goods one acquires. In this way, we advance the literature on learning and information
acquisition that treats conceptual knowledge as fixed and minimally restrictive (e.g., Bardhi, 2024;
Callander, 2011; Schwartzstein, 2014).

This paper also contributes to the literatures on model-based learning, model uncertainty and
mis-specification, and human and machine reasoning. We explain these contributions after pre-
senting our framework and main results.

Overview Section 2 elaborates on our leading example of a farmer learning about fertilizers.

Section 3 extends the example to a more general setting. We consider a Bayesian agent who
makes a statistical decision. His environment contains a collection of unknown, real-valued states.
He learns about these states from noisy signals. Then he takes real-valued actions. His loss equals
the mean squared difference between the actions and states. He takes the actions that minimize
his posterior expected loss.

The signals give the agent statistical knowledge. His prior on the states encodes his conceptual
knowledge. This knowledge tells him how states relate. It allows him to mentally represent states

IThese types of knowledge relate to the two types of uncertainty identified by Marinacci (2015, p.1022): “a state un-
certainty within models and a model uncertainty across them.” We position our paper relative to the model uncertainty
literature in Section 8.



as combinations of “concepts,” which we model as eigenvectors of the state vector’s prior vari-
ance matrix. The corresponding eigenvalues index concepts’ explanatory power: an eigenvalue is
larger when the corresponding concept explains more of the states” prior variances.

We say states are more “reducible” when their prior variances are explained by fewer common
concepts. This happens when the eigenvalues of the prior variance matrix are more spread out.
For example, if one eigenvalue is much larger than the others, then the state vector is likely to be
close to a one-dimensional subspace of the many-dimensional state space. The more spread out
are the eigenvalues, the more the agent can “reduce” the state vector by representing it as a low-
dimensional combination of high-dimensional concepts. This dimension reduction is what makes
conceptual knowledge valuable.

Section 4 contains preliminary results that we draw upon in later sections. We characterize the
instrumental “value” of the agent’s signals, derive sharp bounds on this value (see Proposition 1),
and formalize what it means for eigenvalues to be “more spread out.”

We define and characterize the “value of conceptual knowledge” in Section 5. First, we sup-
pose the agent designs an “optimal sample” containing the most valuable signals. This sample
focuses on the concepts with the most explanatory power (see Proposition 2). Next, we consider
a counterfactual “naive” agent who does not know which concepts have more or less explanatory
power. This prevents him from focusing on the concepts with the most power. As a result, his op-
timal sample is less valuable than the conceptually knowledgeable agent’s. We derive the values
of optimal samples with and without conceptual knowledge, and call their difference the “value”
of such knowledge. This difference equals the payoff gain from having conceptual knowledge and
using it to design a more valuable sample.

Our first main result (Theorem 1) says that conceptual knowledge is more valuable when states
are more reducible. If the states can be explained by a few common concepts, then the agent gains
a lot from identifying those concepts and focusing on them when he designs signals (i.e., “asking
the right questions”). In contrast, if every concept has the same explanatory power, then the agent
gains nothing from identifying those concepts because he designs the same sample that he would
if he was naive.

Our second main result (Theorem 2) says that the value of conceptual knowledge (i) is non-
monotone in the number of signals and (ii) vanishes when there are infinitely many signals. If the
agent can observe more signals, then he can learn more about the concepts he focuses on, raising
the payoff gain from knowing which to focus on. However, having more signals also prompts him
to broaden his focus, lowering the gain from knowing which concepts to focus on. The first effect
dominates the second when the number of signals is sufficiently small. As it becomes arbitrarily
large, the agent’s posterior becomes independent of his prior, and so the conceptual knowledge
embedded in his prior becomes irrelevant and loses its instrumental value.

In Section 6, we extend our measure of the value of conceptual knowledge to one of “deeper”
knowledge. We suppose the agent knows some, but not all, of the relevant concepts, and refer to
the “depth” of his knowledge as the number he knows. Our third main result (Theorem 3) says



that deeper conceptual knowledge is weakly more valuable. However, if the agent knows enough
concepts, then knowing more yields no additional value because it does not change the optimal
sample he designs.

Finally, in Section 7, we study the trade-off between conceptual and statistical knowledge. Our
framework gives us a precise language for describing this trade-off: is the agent better off knowing
more concepts or having more signals? Our fourth main result (Theorem 4) says that if the agent
knows more concepts, then he can attain the same welfare with fewer signals, especially when
states are highly reducible. This is because he can design better samples and extract more value
from each signal, lowering the number he needs to attain a given welfare target.

Section 8 discusses our modeling assumptions and related literature. Section 9 concludes. Ap-
pendix A contains additional discussions and results. Appendix B contains proofs of our mathe-
matical claims.

2 An illustrative example

This section elaborates on the example presented in our introduction. The example is inspired by
our empirical work in Uganda, where we study the role that conceptual knowledge plays when
farmers learn about fertilizers (Sankar et al., 2025).

Environment A Bayesian farmer wants to learn the effect 6, € R of applying fertilizer k € {1,2}
to his crops. His prior on 6 = (61, 6,) is a normal distribution with variance V(6). He observes
the outcome

y = 01w + 6wy +u

of using w; € R more units of fertilizer 1 and w, € R more units of fertilizer 2. The vector w =
(w1, ws) has Euclidean length ||w|| = 1 and the error u € R is independently normally distributed
with variance 2 > 0.3 It captures the randomness in y due to variation in unobserved factors.

The farmer’s data S = {(w, y) } comprise the vector w and outcome y. These data are valuable
insofar as they make the farmer’s beliefs about 6 more precise. We measure the value of S via the
mean difference

n(S) =

N =

2
k;(v(@k) — V(6 |S))

between the prior and posterior variances of 6; and 6.

The farmer chooses the vector w that maximizes 77(S) subject to the constraint ||w|| = 1. Intu-
itively, he chooses the combination of fertilizers that teaches him as much as possible about their
effects. That he can only choose one combination reflects the scarcity and cost of relevant data: our
Ugandan setting is one of many where humans must learn from limited data.

2We interpret negative values of wy, as using less of fertilizer k than the farmer uses currently.
3We normalize |w|| = 1 so that only the direction of w (and not its magnitude) affects the informativeness of y.



Conceptual knowledge The farmer knows the two fertilizers supply equal amounts of nitrogen,
a nutrient that helps crops grow. He cannot see or touch nitrogen; it is a mental construct. But he
can use his conceptual knowledge of nitrogen to express each fertilizer’s effect 0y as the sum of a
common “nitrogen effect” and an idiosyncratic effect. He encodes these effects by the scalars

LR
1= \/E 2 = \/i s

allowing him to express the effect vector

0 = y101 + 1202

as a linear combination of two unit vectors

1) 4 o L1
Z)1—\ﬁ1 an 02—5_1.

These vectors form an orthonormal basis for the Euclidean space R? containing 6. The common
and idiosyncratic effects y; and 7 are the coordinates of 6 over this basis.

The farmer knows v; and v, but does not know 7 or 2. Knowing v; and v, makes learning 6
equivalent to learning v = (71, 72). Moreover, since v; and v, are orthonormal, his data S have

value*
1 2
E Z V(v | S)).

Thus, knowing about nitrogen allows the farmer to reframe his problem from learning about the
effect vector 0 to learning about the coordinate vector y. He does not have to learn each fertilizer’s
effect separately; instead, he can learn the nitrogen and idiosyncratic effects, and extrapolate the
overall effects. This is important because he only has one observation (w, y) from which to infer
two unknowns 6; and 6,. Knowing how these unknowns relate (via v; and v7) allows him to learn
about both at the same time by choosing w appropriately.

The farmer’s choice of w depends on the relative contributions of 7y; and -, to the prior vari-
ances of ¢ and 6,. He knows <y contributes more: the fertilizers” effects are mostly determined
by how much nitrogen they supply. So he assumes y; and 7, are independently distributed with
variances Ay = ¢?(1+ p) and Ay = ¢?(1 — p). The sum

ey (A5 (B8
=V(6;) +V(62)

of these variances equals the sum of the prior variances of 6; and 6,. The parameter p € [0,1)

determines the share
A _1+p

)\1+)\2_ 2

“We derive this expression for 77(S) in Section 4.1.



of this sum contributed by ;. This share equals 1/2 when p = 0, in which case 71 and 7y, con-
tribute equally. It equals one in the limit as p — 1, in which case only < contributes. The larger
is p, the more likely is 6 to be close to the one-dimensional subspace of IR? spanned by v;.

The coordinate vector 7y = (1, y2) has variance

V(y) =o?

1+p 0
0 1-pl|

and so the effect vector

has prior variance

W)l )
_ 2 [; ﬂ (1)

Thus 6; and 6, have equal prior variances o and correlation p. Intuitively, the more 6; and 6, are

=
|
N
Sl
N
| — |
_ =
—_

determined by the common effect 71, the more likely they are to have similar values.
The prior variance matrix (1) has eigendecomposition

V() = AlvlvlT + /\zvzva.

Each eigenvalue A, equals the prior variance of 6 in the direction of the corresponding eigenvec-
tor vg. So 6 has the most prior variance in the direction of v, and the least in the direction of v,.

Value of information The value 77(S) of the farmer’s data is largest when w = £v; and small-
est w = 10, (see Proposition A2). For example, choosing w = v; makes y = 1 + u a “pure signal”
of 1. This makes & maximally valuable because it provides information about the component of 6
with the most prior variance, leading to the largest difference between prior and posterior vari-
ances. In contrast, choosing w = v, makes y = 7, + u a pure signal of 7. This makes S minimally
valuable because it provides information about the component of 8 with the least prior variance,

leading to the smallest difference between prior and posterior variances.’

Value of conceptual knowledge The data S have maximal value

7" = max 711(S).
[[wll=1

5In general, the data S are most valuable when they contain information about the components of § with the most
prior variance. We formalize and prove this claim in Sections 4.1-4.3.



The farmer attains 77* by choosing w = 4v;. This choice relies on his conceptual knowledge: he
must know 60; and 6, share a common nitrogen effect. Without this knowledge, the farmer would
have no way to represent 6y as the sum of components with differential contributions to its prior
variance. So he would assume equal contributions (i.e., p = 0) and his data would have maximal

value
71 = max [7((8)|p:0}.

[lwl||=1
The difference
1= — 70

between 77* and 71(?) captures the value of the farmer’s conceptual knowledge: the value of know-
ing about nitrogen and using this knowledge to make his data more valuable.

The value IT of the farmer’s conceptual knowledge is larger when p is larger.>” Intuitively, if
most of fertilizers” effects come from supplying nitrogen, then the farmer can refine his prior a lot
by isolating the nitrogen effect when he tries fertilizers. We formalize this intuition in Section 5,
and generalize it to a setting in which S has arbitrary size and 6 has arbitrary length. In this setting,
conceptual knowledge is more valuable when the eigenvalues of the prior variance matrix V(6)
are more spread out (see Theorem 1). This is why raising p raises IT: it raises A; = (1 + p)c? and
lowers A, = (1 — p)o? without changing their mean (A1 + A5)/2 = 0.

3 Framework

We consider a Bayesian agent who collects data before making a statistical decision. This section
describes the agent’s environment, formalizes his conceptual knowledge about that environment,
and presents some specific examples.

3.1 Environment

Prior There is a true but unknown vector 6 = (64, ...,0k) of real-valued “states.” The agent’s
prior on 0 is a probability distribution IP over the K-dimensional Euclidean space RX. This distri-
bution is normal with mean y € RX and variance £ € RX*K:

P=N(uxX).

We assume K > 2 is finite and X. is invertible.
The agent deduces IP from his conceptual knowledge about 8. We explain this deduction in
Section 3.2.

6We have

2,4
— —(1+p) g >~ and 70 = 704 5
2((1+p)o? + o) 2(02 +03)
by Proposition A2 and the definition of 77(?). So 97* /9p > 0 and 971(?) /3p = 0, from which it follows that d11/dp > 0.
"For example, the correlation p will be close to one when the fertilizers supply nitrogen only, and close to zero when

their nutrient profiles are very different.



Data The agent observes a sample S = {(w(), ()}, of size 1. Each “observation” (w(?),y()
comprises a “covariate” w)) € RX with Euclidean length |[w®]|| = 1,8 and an “outcome”

equal to the sum of
K .
= Z 9kwl({l)
k=1

and an independently normally distributed error u(!) with mean zero and variance o2 > 0. Thus,
the outcome y) provides a noisy signal of a weighted combination of states, where the weights
are determined by the covariate w(!) = (wgl), ceey w}é))

Actions and losses The agent uses his prior [P, the sample S, and Bayes’ rule to form posterior
beliefs about 0. Then he chooses a K-vector a = (a3, ...,ak) of real-valued actions. These actions

induce a loss
K
Z ax — ;)

equal to the mean squared difference between them and the corresponding states.”
Let E take expectations with respect to the prior distribution IP. The agent chooses the action
vector that minimizes his posterior expected loss:!

a € argminE[L(6,4") | S]. (3)
a’eRK

Intuitively, he wants to estimate 6y, ..., 0k accurately, and the accuracy of his estimates ay, ..., ax
is determined by their squared errors (6; — a;)?. Thus, our framework aligns with least squares
estimation, a tool used throughout empirical economics and statistics.!!

8 Assuming the covariates have unit length normalizes the scales of the signals y<1>, .., y<”> so that only the direc-
tions of wV, ..., w() (and not their magnitudes) affect signals’ informativeness. It also ensures the Gram matrix (14)
always has trace n (see Footnote 25). This allows us to identify optimal samples of size n via a specific Gram matrix (22).

9Suppose p1, ..., px are strictly positive and sum to one. Let D be the K x K diagonal matrix with kkth entry Kpy,
and leta’ = Da and 6’ = D6. Then

K
L(d,0') =Y pr(ax —6;)?
=1

is a weighted average of the squared differences between the actions and corresponding states. The weights py, ..., px
encode the agent’s preferences: the larger is py, the larger is the loss from taking an action a; different than the state 6.
We focus on the case with py = 1/K for each k, which makes D equal the identity matrix and 6’ equal 6. However, we
can easily generalize our analysis to a setting with non-equal weights by replacing 0 with 6’. Then what matters are the
eigenvalues and eigenvectors of V(#’) = DD, rather than those of Z. This does not change our results or insights
substantively.

01 Appendix Section Al, we explain how the choice problem (3) is equivalent to a prediction problem that arises
in the machine and statistical learning literatures. This equivalence comes from interpreting 61, ..., 0k as values of an
unknown function.

Hlndeed, if the prior distribution IP is diffuse, then (3) equals the Ordinary Least Squares estimate of 6 given S.



Value of S If the agent did not observe the sample S, then his minimized prior and posterior
expected losses would be equal. The information in S is instrumentally valuable because it helps
the agent take actions with lower expected losses. Accordingly, we define the “value of S” to be

the difference between his minimized prior and posterior expected losses:!2
S) = min E[L(6,4")] — min E[L(6,4") | S]. 4
m(§) = min E[L(6,a)] — min E[L(6,4') | 5] (4)

Covariate selection The agent chooses the covariates w(l), e, w™) that maximize (4) subject to
the length constraints ||w®| = 1. Intuitively, he wants to design the signals y(!), ...,y so that
they provide as much payoff-relevant information as possible about the state vector 0.

Timing First, nature draws 6 from the prior distribution IP. Second, the agent chooses the co-

variates w(!)

S, w™ and observes the outcomes y(l), el y(”). Third, he combines P and the sam-
ple S = {(w,y®)}"_, to form posterior beliefs about 6. Finally, he chooses the action vector (3)

that minimizes his posterior expected loss.

3.2 Conceptual knowledge

Mental model and concepts Our definition of conceptual knowledge draws upon psychologists’
and cognitive scientists’: concepts are the building blocks of mental models (Johnson-Laird, 1983),
are used to describe objects and how they relate (Murphy, 2002), and allow humans to generalize
across objects (Mitchell, 2021).

Accordingly, our agent’s conceptual knowledge allows him to describe the states 6y, . .., 0x and
how they relate. It gives him a mental model of

K
0 =Y v )

k=1
as an unknown combination of known vectors vy, . . ., vx € RK. We call these vectors "concepts.”13
They are the building blocks of the agent’s mental model. They capture his environment’s gen-
eralizable structure: each state 6; depends on the j™" component of vy via a coefficient 7, € R
that is independent of j.!* This allows the agent to generalize across states: signals of §; provide

information about 71, . .., vk, from which he can extrapolate 65, .. ., 0.

For example, suppose 01, ..., 0k are the effects of applying different fertilizers. Then vy, ..., vk
could encode nutrient quantities and 71, . .., 7k the fertilizer-invariant effects of supplying differ-

12Raiffa and Schlaifer (1961, p-90) define a similar object and call it the “(expected) value of sample information.”

13The vectors vy, . .., vg may not correspond to physical features of the agent’s environment. Instead they are mental
constructs he uses to make sense of his environment. For example, nutrients like nitrogen are mental constructs: no
farmer sees them. All farmers see are the effects of applying fertilizers. This is why we call vy, ..., vx “concepts.”

14The coefficients 71, ..., vk are akin to “deep parameters” that determine the “reduced-form” states 6, ...,60k via
the structural relationships encoded by vy, ..., vk (Lucas, 1976).
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ent nutrients.!® Moreover, if a farmer learns one fertilizer’s overall effect, then he can extrapolate
the others’ via their joint dependence on 71, ..., k.

For convenience and without loss of generality, we assume vy, ..., vk are orthonormal for the
remainder of the paper.

Eigendecomposition The agent knows the concepts vy, ..., vk included in his mental model (5).
He does not know the coefficients 71, ..., vk, but he knows some contribute more to the states’
prior variances than others. Specifically, he knows each coefficient -y is independently distributed
with variance Ay > 0 non-decreasing in k.!® Then 6 has prior variance

Y =VAVT

K
=Y Mowof, (6)
k=1

where

M

>
Il

Ak

is the K x K diagonal matrix with entries A; > --- > Ag > 0 and

1%

vl o oee ’Z)K

is the K x K orthogonal matrix with columns v, ..., vk.
Equation (6) is an eigendecomposition of X. The kth largest eigenvalue Ay = V(1) of ¥ equals
the prior variance of 6 in the direction of the corresponding unit eigenvector vy. The trace

K
tr(Z) = Z /\k
k=1

of X equals the sum of the eigenvalues Ay, ..., Ax. So these eigenvalues” mean

agks
Rt

>
Il
o
I
N

ks
=<
$

=R =

»
I
—

15Alternatively, if 01, ...,0x are the prices of financial assets, then vy, ..., vg could encode payoffs in different states
of nature and <4, ..., Yk the prices of Arrow-Debreu securities (see, e.g., Varian, 1987).

16 1t is without loss of generality to assume 1, ..., Yk are independently distributed. This is because A is positive-
semidefinite, and so, by the spectral theorem, there is an orthogonal matrix A € RX*K and diagonal matrix A’ € RKXK
such that A = AA’AT. Then V' = VA is orthogonal and . has eigendecomposition V' A’(V’)T, so we can carry out our
analysis by replacing V with V/ and A with A’. Likewise, it is without loss to assume Ay > -+ > Ag because we can
permute the indices of the eigenpairs (Ag, v ) without changing X.

11



equals the mean of the states’ prior variances. The ratio A;/ tr(X) equals the share of these vari-
ances contributed by <. If the shares contributed by 71, ..., 7k are equal, then Ay = tr(X)/K = A
is constant in k and so & = VAV is proportional to K x K identity matrix Ix:

V(AIK) VT = Alk.

In contrast, if A1/ tr(X) ~ 1, then 7; contributes most of the states’ prior variances.

Reducibility The distribution of A4, ..., Ax around their mean A= tr(X)/K captures the states’
“reducibility.” They are more “reducible” when their prior variances are explained by fewer com-
mon concepts: when A, ..., Ag are more spread out around A.'7/18 The agent’s conceptual knowl-
edge allows him to “reduce” the state vector 6 by representing it as a low-dimensional combina-
tion of higher-dimensional concepts.

If the agent had no conceptual knowledge—i.e., if he did not have a mental model of 6 as a
combination of concepts with different explanatory powers—then he would not be able to reduce
states in the manner described above. His prior variance matrix

>0 = ALk

would equal the prior variance matrix in the case when Ay = A for each k € {1,...,K}. We refer
to PO = NV(1,2()) as a “naive” prior because it ignores the covariances among states stemming
from their dependence on common concepts.'

We can use the true prior P = N (i, £) and naive prior P() to measure how much the agent’s
conceptual knowledge allows him to reduce states. Since IP and IP(?) are normal distributions with
equal means, the Kullback-Leibler (hereafter “KL”) divergence from IP and PO equals20

et(= 0
D (P || PO) = % <tr((z<0>)12) —K+ 1n<ddte%))> )

1

—-im(“) 7)
o2m A

The KL divergence (7) measures the information gain from using IP as a prior rather than PO, This
information is purely conceptual: it does not depend on the sample S. It comes from knowing how

17WWe formalize what it means for Ay, ..., A to be “more spread out” in Section 4.4.

BIf Ay = .-+ = Ag (as in Example 1), then the distribution of Ay,..., Ak is fully determined by the leading eigen-
value A1 and the “spectral gap” (A1 — Ay). This gap appears elsewhere in the statistical literature: it determines Markov
chains” mixing times (Levin et al., 2008) and whether principal components can be estimated consistently (Yu et al.,
2015).

19The naive prior variance matrix £(0) is robust to mis-specification in that it commits as little as possible to any given
covariance structure. By spreading variance evenly across all dimensions of RK, it avoids overweighting components
of 0 that later prove irrelevant. However, it also forfeits any potential gains from overweighting components that later
prove essential.

20See Rasmussen and Williams (2006, Section A.5) for a derivation of (7).
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to represent states as low-dimensional combinations of high-dimensional concepts. We study the
value of this dimension reduction in Section 5.
The KL divergence (7) equals zero when the eigenvalues A4, ..., Ax of X are equal and is larger

when they are more spread out (see Proposition A4).%!

This is because spreading Ay, ..., Ag nar-
rows the distribution IP to a lower-dimensional subspace of RX.

For example, consider the prior variance matrix (1) derived in Section 2. This matrix has eigen-
values A; = 0?(1+p) and A, = ¢%(1 — p), which have mean A = ¢ and become more spread out

as p € [0,1) grows. The KL divergence
D (P || P = _%ln(l -0

from IP to IP(?) equals zero when p = 0 and grows as p grows. If p = 0, then the true prior IP has
equal variance in all directions of R?, and so the agent gains nothing from knowing the eigenvec-
tors v; and v, of (1). The larger is p, the more concentrated is IP around the subspace spanned
by vy, and so the more the agent gains from knowing v; and v;.

Relationship to PCA The example above illustrates the connection between our ideas and prin-
cipal component analysis (hereafter “PCA”). PCA is a dimension reduction technique that projects
a distribution onto its highest variance dimensions. Traditional PCA estimates these dimensions
from data. In contrast, our agent derives them from his conceptual knowledge: he knows which
dimensions have the highest variance before observing any data. This “pre-data PCA” allows him
to collect more instrumentally valuable data; we call this benefit the “value of conceptual knowl-
edge” and quantify it in Sections 5-7.

3.3 Examples

Below are two examples of how the prior variance matrix X encodes conceptual knowledge about
the states. The first example generalizes the setting described in Section 2. It builds X from first
principles, starting with the eigenvalues and eigenvectors. The second example builds X from
knowledge of how the states are generated, then derives the eigenvalues and eigenvectors.

Example 1 (Pairwise correlated states). Suppose the agent knows each state 6y has two compo-
nents: a common component that is proportional to the states” mean and an idiosyncratic compo-
nent that is independent across states. He encodes the common component by the unit vector

211£ P(0) has mean 49 € RX, then (7) becomes
1(1 K A
DrL(P | PO) = 2 =l — @ — 1(;‘).
kL (P || PT) Z(AW | k;n 3

So even if y(o) # u, the KL divergence from IP to P©) is non-negative and does not fall when A4, ..., Ax undergo a MPS
(see Proposition A4). But it is strictly larger than zero when y(o) #p,evenif A = - = Ag.
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where 1x = (1,...,1) is the K-vector of ones. He encodes the idiosyncratic components by unit
vectors vy, ..., vk that are orthogonal to v; and each other. The kth coefficient Yk in (5) has prior

variance
1 K—-1) ifk=1
A =02 ol ) i
1—p ifk>1,

where 02 > 0is the mean of A4, ..., Ax and where p € [0,1) determines the share

I S | +o(1- 1

Mt +Aax K PUTK
of the prior variances of 0y, ..., 0k contributed by the coefficient 1 on v;. This share equals 1/K
when p = 0, in which case A is constant in k and so 71, ..., vk contribute to the prior variances

of 01, ...,0k equally. It equals one in the limit as p — 1, in which case only -y; contributes.
Since v, ..., vk are orthonormal, the sum

K
) ool = I
k=1

of their outer products equals the K x K identity matrix. Therefore, the prior variance matrix
XY= AlvlvlT + AK(IK — U1U{>
= po? 11 + (1 - p)o’lk

L p
=c?|p 1 (8)

is the K x K matrix with diagonal entries equal to ¢? and off-diagonal entries equal to po?. Thus,
under the agent’s prior, the states have equal variances 0 and pairwise correlations p.

Example 2 (Random walk). Let v > 0. Suppose the agent knows 6y, ..., 0k are values of a random
walk with known initial value ) € R and unknown, independently distributed increments

9k — 9](,1 ~ N(O,Vz).

Then the prior variance matrix

R ©)
12 - K
has jkth entry Lj = v2>min{j, k}. Fortiana and Cuadras (1997) show that (9) has k" largest eigen-

value ) (% )
_ve o (2k-1)m
)"‘_4CSC< 2K + 1 >
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Figure 1: KL divergences Dxy. (P || P(?)) when states are pairwise correlated (i.e., when 6 has prior
variance (8)) and when they follow a random walk (i.e., when 6 has prior variance (9) with 12 =
202/(K+1))

and that the corresponding unit eigenvector vy has j component

2 . (jRk—1)m
[o4]; = sin .
V2K +1 2K+1
The eigenvalues of (8) have mean ¢, whereas the eigenvalues of (9) have mean v?(K + 1) /2.
Choosing 12 = 20% /(K + 1) equates these two means but does not equate the eigenvalues’ distri-
butions, nor the KL divergences Dy (P || P(?)) those distributions imply. We illustrate this fact in
Figure 1. It shows that assuming states follow a random walk is equivalent, in terms of how much
prior structure it imposes, to assuming a large pairwise correlation.?? This is especially true when

there are many states: if K = 5, then the equivalent correlation is about 0.82; if K = 50, then it is
about 0.97.

4 Preliminaries

This section contains preliminary results that we draw upon in later sections. We characterize the
optimal action vector (3), the posterior expected loss it induces, and the value (4) of the sample S.
We establish sharp lower and upper bounds on this value, and explain how the agent constructs

22Callander (2011) and others use Brownian motions (the continuous-time analogues of random walks) as tools for
modeling “complexity.” They define “complex” environments as those in which only local learning is possible: learning
a state provides some information about nearby states but little about distant states (see also Bardhi (2024)). The limiting
case is when learning a state provides no information about others; in our framework, this happens when the states are
uncorrelated. Yet Figure 1 suggests that Brownian motions are as structurally restrictive as assuming states are highly
correlated.
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“optimal” samples. Finally, we formalize what it means for the eigenvalues of the prior variance
matrix to be “more spread out.”

41 ValueofS

Let V take variances with respect to the prior distribution IP. Lemma 1 characterizes the optimal
action vector (3) and the posterior expected loss it induces.?® This vector equals the posterior mean
of 0. It induces a posterior expected loss equal to the mean of the posterior variances of 6y, . .., 6k.

Lemma 1. The optimal action vector a = E[0 | S] induces posterior expected loss

K
E[L(6,4) | S] = % Y V(6| S). (10)
k=1

If the sample S was empty, then (10) would equal the minimized prior expected loss

1 K
inE[L(0,a")] = =) V(6. 11
min E[L(6,4')] Kk;(k) (11)
Substituting (10) and (11) into (4) yields and expression for the sample’s value 77(S) in terms of
the states’” prior and posterior variances:

n(S) = (V(6) = V(0 | 5)). (12)

| =
1=

k

1

Intuitively, the sample is valuable insofar as it lowers states” variances, allowing the agent to esti-

mate them more accurately. Moreover, since vy, ..., vx are known and orthonormal, we have?*

K
w(S) = g LV - Vin 5) 13)
=1

Thus, equivalently, the sample is valuable insofar as it lowers the variances of 4, ..., yk.

2Lemma 1 holds even when IP is not normal. We assume IP is normal so that we can derive closed-form expressions
for the posterior variances of 6y, . .., 0g and, thus, the value (12) of S.

24We have 6 = V+y, where V is the orthogonal matrix with known columns vy, ..., vk and 1 is the vector of unknown
coefficients 71, ..., k. So the prior variances of 01, ...,0x and 1, ..., vk have equal sums:

K K
L V(@) = (V) = (VYY) =t (VV()VT) £ V(7)) = 1 V),
=1 =1

where x uses the cyclic property of matrix traces and the orthogonality of V. Similarly, the posterior variances
of 01,...,0k and 71, ..., vk have equal sums. Substituting these sums into (12) yields (13).
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4.2 Bounds on 77(S)

We can express (12) in terms of the traces of the prior and posterior variance matrices:

2(S) = %(tr(Z) (V0] S))).

Lemma 2 characterizes V(6 | §) in terms of the prior variance matrix X and “Gram matrix”
n . .
G= Zw(l)(w(l))T. (14)
i=1

Lemma 2. We have .
LN

V(6 =(z 1+ = . 1

©18) = (= + ;6) 5

The Gram matrix (14) is symmetric and positive semi-definite. So, by the spectral theorem,
there is a K x K diagonal matrix

01
A=
%
with entries 4y > - -- > dx > 0 and a K x K orthogonal matrix
such that
G = QAQT
K
=Y Sl (16)
k=1

Then 44, ..., dk are the eigenvalues of G and wy, ..., wk € RK are the corresponding unit eigen-
vectors. Proposition 1 uses the eigendecompositions (6) and (16) of the prior variance and Gram
matrices to provide sharp bounds on 77(S).

Proposition 1. The value 7t(S) of S satisfies

l)i /\—<1+5K’<+1)1 én(S)?li A—<1+‘5k>1 (17)
Kk:l k )Lk o2 - - Kk:l k Ak (TL% !

where x holds with equality if wy = vg_y41 foreach k € {1,...,K} and % holds with equality if wy = vy
foreachk € {1,...,K}.

Proposition 1 says that the sample S is most valuable when the eigenvectors of X and G are
maximally “aligned”: when v, = wy for each k € {1,...,K} and hence V = Q. Then S contains
more information about components of 6 with larger prior variances. In contrast, the sample is
least valuable when the eigenvectors of X and G are maximally “mis-aligned”: when vy = wg_k41
foreach k € {1,...,K}. Then S contains less information about components of 6§ with larger prior
variances.
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4.3 Optimal samples

Suppose the eigenvectors of X and G are maximally aligned (and hence V = ). Then, by Propo-
sition 1, the value 77(S) of S rises when the trace

K -1
H(V(O]S) =Y <A1k + ‘5k>

2
k=1 Ty

of the posterior variance matrix falls. This trace depends on the eigenvalues dy, . .., 6k of G, which
are non-negative, non-increasing, and sum to n.2% So 71(8S) is maximized when é, .. ., 6k solve

K ~1 K
. 1 o ) .
min — 4+ —= subjectto 61 > ... > g > 0 and Op = n. 18
610k ER k; (Ak o2 ) e s tRs k; ¢ e
Proposition 2 describes a solution to (18). It uses the integer

# ko1 n k
R* = max kG{l,...,K}:Z—_—I—ﬁZ}T (19)

j=1"" u k

to provide a sharp upper bound
1 (& NS A
=g ZAk—(R)<ZAk+UZ) (20)

on the value of S.26

Proposition 2. Define

o (Frfit %) ifk<k
0 ifk > R*
foreach k € {1,...,K}. Then n(S) < 7t* with equality if

5 = 1)

G=Y ool (22)

K
k=1

We call the sample “optimal” if it induces the Gram matrix (22). The agent can construct such
a sample as follows: for each k € {1,...,K}, collect J; observations with covariate vr.%” Then the

25 Indeed «
Z o =tr(G) = tr(z w(i)(zu<1))T) z Ztr<(w(i))Tw(i>> oy,
k=1 i=1 i=1

where * uses the linearity and cyclic property of matrix traces, and »+ uses the fact that ||w(?)|| = 1 for each i.
26Proposition 2 echoes Liang et al.’s (2022) Theorem 1, which says that if there are two unknown states (which Liang
et al. call “attributes”), then one should prioritize learning about the state with more prior variance.
Z/This may be infeasible for two reasons: (i) the eigenvalues d}, . .., d} may not be integers; (ii) the agent may not be
able to choose vy, ...,vk as covariates (since, e.g., it would require him to combine negative quantities of fertilizers).
We abstract from these issues for convenience and expositional clarity.
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outcomes y1), ...,y are pure signals of the coefficients 1, . .., yx. For example, suppose w(!) =
v1. Then, since v1, ..., vk are orthonormal, we have

y(l) — eTw(l) + u(l)

X T
= (Z 7kvk> vy +ul!)
k=1

=7 +ull

An optimal sample contains pure signals of 71, . .., Yr+, the coefficients in (5) that contribute most
to the states’ prior variances. However, it provides no information about yg+41, ..., vk, the coef-
ficients that contribute least to the states” prior variances. Thus, the agent optimally “regularizes”
by focusing on the coefficients that “matter” and ignoring those that do not. The number R* that
“matter” grows as the sample size n grows. We call R* the “rank” of an optimal sample because
it is the rank of the Gram matrix (22).

If S is optimal, then the posterior variance matrix V(6 | S) has k" largest eigenvalue

* -1
<1+‘55<k>1: R*(Zﬁ&ﬁ%) if k < R*
Moo Ak if k > R*

and trace?8

U AP £ AN
,;<M+UE) = (R¥) <2M+03> +k§*2\k. (23)
The eigenvalues of V(6 | S) are the posterior variances of the unknown coefficients 1, ..., vx. So
if S is optimal, then it equates the posterior variances of 71, ..., yr+ to each other and the posterior
variances of yg«41, . . ., Yk to their prior variances.?’ Intuitively, the agent has a target variance and
designs S so as to bring the posterior variances of 71, . .., vk below that target.** This minimizes
the trace (23) given the sample size n.

4.4 Mean-preserving spreads
Finally, consider the eigenvalues Ay, ..., Ak of the prior variance matrix X. Let F : (0,00) — [0, 1]
be their (empirical) cumulative distribution function (hereafter “CDEF”):

F(Z):|{ke{1,...,KI<}:Ak§z}| -

28The two terms on the RHS of (23) correspond to the “sampling” and “extrapolation” errors discussed in Appendix
Section A2.3.

PThis equality of large eigenvalues and ignorance of small eigenvalues is reminiscent of Arrow’s (1963) theorem on
the optimality of deductible insurance contracts. Such contracts second-degree stochastically dominate all other con-
tracts with the same premia (Gollier and Schlesinger, 1996). They provide full coverage against risks above a minimum
threshold. Similarly, optimal samples provide “full coverage against posterior variance” above a minimum threshold.

30This strategy is called “reverse water-filling” in rate-distortion theory—see Cover and Thomas (2006, Chapter 10).
It also appears in Ilut and Valchev’s (2025) model of abstract reasoning.
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for all z > 0. A “mean-preserving spread” (hereafter “MPS”) of F is a CDF F': (0,00) — [0,1]
such that

(i) The distributions described by F and F’ have the same mean:

/OoozdF(z) = /OoozdF’(z).

(ii) For all z > 0, the area under F’ from 0 to z is at least the area under F from 0 to z:
z
/ (F'(t) — F()) dt > 0.
0

These are the “integral conditions” from Rothschild and Stiglitz (1970). Condition (ii) says that F’
has more weight in its tails than F, capturing the idea of eigenvalues being more spread out.

We say Ay, ..., Ak “undergo a MPS” when their CDF (24) undergoes a MPS. This changes the
trace of the posterior variance matrix without changing the trace of >. So if A4, ..., Ax undergo a
MPS, then the agent’s posterior expected loss changes but his prior expected loss does not. This
makes MPSs useful for analyzing how the value of S depends on the distribution of Ay, ..., Ak.
We discuss this dependence in Section 5 and Appendix Section A2, in which we state results that
depend on the following lemma:

Lemma 3. Let Ay > 0and A} > 0 be non-increasing in k € {1,...,K}, and let F and F’ be their CDFs
defined as in (24). The following are equivalent:

(i) F'is a mean-preserving spread of F.
(ii) Y1 g(AL) > Y, g(Ax) for all convex functions g : (0,00) — R.
(iii) Z;-‘Zl ALz Z;-‘Zl Ajforeach k € {1,...,K}, with equality when k = K
(iv) Z]K:k )\;- < Z]K:k Aj foreach k € {1,...,K}, with equality when k = 1.
For example, consider the prior variance matrix (8) constructed in Example 1. This matrix has

eigenvalues Ay = (1+p(K—1))c2and Ay = - - = Ag = (1 — p)o?. Their k" partial sum

k
Y A= (k+p(K—k)o?
j=1

is increasing in p when k < K and constant in p when k = K. Thus, by Lemma 3, the eigenvalues
of (8) undergo a MPS when p rises.
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5 Value of conceptual knowledge

Whereas information is valuable insofar as it helps the agent make better decisions (i.e., take ac-
tions ay, . .., ak that estimate the states 0y, . . ., 0x more accurately), conceptual knowledge is valu-
able insofar as it helps him obtain better information.

We formalize this idea as follows. Suppose the agent collects an optimal sample with value 7*
(see Section 4.3). Designing this sample relies on his conceptual knowledge: his mental model (5)
of 0 as a combination of concepts with different explanatory powers. If the agent did not have this
knowledge, then he would use the “naive” prior P(®) = A (1, () described in Section 3.2. He

would assume 6 has prior variance £(*) = AIx, a matrix with eigenvalues )Lgo) =...= /\§<0) = A
So, by analogy to (19) and (20), the agent’s optimal sample would have rank

0) — ko1 n k
R = max ke{1,...,1<}:zw+§2—)
1 u
J

j=1 A )\IEO
=K
and value
-1
1 R(0) R 1 n
0 =~ [ A0 - (RO)? = 4"
¥ =
K (kl £ k=1 A,EO) s
At
K471
where
_n/o;
1/A

indexes the precision of the data relative to the agent’s prior. This sample would provide equal
information about each state: the optimal Gram matrix (22) would have equal eigenvalues.31 In-
tuitively, if the agent did not know which concepts had more explanatory power, then he would
have no reason to prioritize some components of 6 over others when collecting data, and so he
would collect the same amount on every component.

The true and naive prior variance matrices ¥ and () have equal traces, and so replacing the
true prior P = N (y, £) with the naive prior P() = A(1,Z(?)) does not change the agent’s prior
expected loss (see Section 4.1). But the two priors imply different optimal samples and different
posterior expected losses (10). The difference

1= —n®
_ . . — -1
A& A (& A Kt
= — P R* 7_’_"[' —
K(kl/\ ( )<I§1)\k K+t

Slindeed, if Ay, ..., Ak are equal (to A), then 6%, . . ., 0% are also equal (to n/K).
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between 77* and 71(?) equals the decline in the agent’s posterior expected loss from having concep-
tual knowledge and using it to design an optimal sample.

Accordingly, we call IT the “value of conceptual knowledge.” It depends on the eigenval-
ues Aq,...,Ag of X and the precision parameter T (which jointly determine R*). We characterize
this dependence in Theorems 1 and 2.

Theorem 1. The value I of conceptual knowledge
(i) is non-negative,
(ii) equals zero when A4, ..., Ak are equal, and
(iii) does not fall when A1, ..., Ax undergo a MPS.

Theorem 1 says that conceptual knowledge is more valuable when states are more reducible.
If a few common concepts explain most of states” prior variances, then the agent gains a lot from
identifying those concepts and learning about their effects 71, ..., yr+ (i.e., “asking the right ques-
tions”). In contrast, if every concept has the same explanatory power, then the agent gains nothing
from identifying those concepts because he designs the same sample as he would if he was naive.

Our proof of Theorem 1 draws upon the following three observations. First, every distribution
of Ay, ..., Ak is a MPS of the degenerate distribution under which they are equal (to their mean A).
Second, if A\, = A foreach k € {1,...,K}, then the agent’s optimal sample has the same rank R* =
R and value r* = (0
change when Ay, ..., Ax undergo a MPS, the value 77 of an optimal sample can rise but cannot

as a naive agent’s, which implies IT = 0. Third, whereas 71(®) does not

fall (see Lemma B3).3?
%In contrast, the rank R* of an optimal sample can rise or fall when Ay, ..., Ax undergo a MPS. For example, sup-
pose K =3 and
5 ifk=1
M=1493+7 ifk=2
2-¢ ifk=3

with { € {0,1}. Then Ay, Ay, A3 undergo a MPS when  rises from zero to one. Now if = 0 then

1iff <
R*|,_y =12 if%gg%<%
3 i<k
whereas if { = 1 then
1if % <5
R*[,_; =12 ile—oggluz<%
3 if 35 < 2.

So the MPS raises R* when 1/20 < n/U& < 2/15 but lowers R* when 7/15 < n/alz, < 31/20.
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Theorem 2. There is a finite threshold T > 0 such that 11 is increasing in T if and only if T < t'. This
threshold equals zero if and only if A4, ..., Ak are equal. Moreover,

lim IT=0.

T—r00

Theorem 2 says that the value of conceptual knowledge is non-monotone in 7 (and thus n =
T(T,% / X). This is because raising T has two effects:3

(i) it gives the agent more information about the unknown coefficients 1, ..., yr, raising the
gain from knowing which concepts to focus on;

(ii) it leads the agent to learn about more coefficients (i.e., it raises R*), lowering the gain from
knowing which concepts to focus on.

The first effect dominates the second precisely when T < 7’. The threshold 7’ equals zero if and
only if Aq,..., Ak are equal, in which case conceptual knowledge has no value because it does not
change the optimal sample from what a naive agent would design.

Theorem 2 also says that the value of conceptual knowledge vanishes as T (and thus 1) grows
without bound. This is because the agent’s posterior becomes less dependent on his prior as T
grows and is independent in the limit as T — oo. Intuitively, if the agent has infinite data, then
he does not benefit from doing “pre-data PCA” (see Section 3.2) because he can do traditional
(post-data) PCA. Having access to unlimited data washes out the benefit of knowing what data
to collect. But this washout relies on having unrestricted access: the agent must be able to choose
covariatesw(!), ..., w(" that span the K-dimensional Euclidean space containing the state vector 6.
If the covariates do not span IRX, then S may contain no information about some components of 6,
the agent’s posterior expected loss may be arbitrarily large, and the value of S may be arbitrarily
small. We illustrate this possibility in Appendix Section A2.3.

As an illustration of Theorems 1 and 2, consider the prior variance matrix (8) constructed in
Example 1. Its eigenvalues are equal when p = 0 and undergo a MPS when p € [0, 1) rises. So, by
Theorem 1, the value IT of conceptual knowledge equals zero when p = 0 and is non-decreasing
in p. Moreover, by Theorem 2, there is a threshold T/ > 0 such that IT is increasing in 7 if and only
if T < 7'. We characterize this threshold below. It equals zero when p = 0 and rises when p rises,
consistent with Theorem 2.

Proposition 3. Suppose 6 has prior variance (8) with 0> > 0and p € [0,1). Then I1
(i) equals zero when p =0,
(ii) is increasing in p, and
(iii) is increasing in T if and only if
) S
14+p(K—=1)"

BIntuitively, raising 7 (i) gives the agent better answers to his chosen questions, but also (ii) prompts him to ask more

T

questions. The first effect raises the value of knowing which questions to ask; the second effect lowers it.
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Whereas Theorem 1 implies IT is non-decreasing in p, Proposition 3 says I1 is increasing in p.
This is because Theorem 1 holds for an arbitrary MPS, which may not affect the largest R* eigen-
values and thus may not change the value (20) of an optimal sample. But this is impossible for the
MPS induced by raising p, which raises the largest eigenvalue A; = (1+ p(K — 1))c? of (8).

6 Deeper conceptual knowledge

Next, we study the value of “deepening” the agent’s conceptual knowledge. We model this pro-
cess as follows. Suppose the agent knows the trace

K
tr(Z) = Z Ak
k=1

of the true prior variance matrix X and its first ] € {0,1,...,K} eigenpairs (A, vx), but does not
know the last (K — J) eigenpairs. Intuitively, he knows the | concepts with the most explanatory
power, but does not know the (K — J) concepts with the least explanatory power. He assumes 6
has prior variance

ZU) = 2 Akvkv,f + )\g) (IK — Z Z)/ﬂ){) ’ (25)

k<J k<J
where " 1
AW=_—_¥y)
K K—] kg] k

is the mean of the smallest (K — ) eigenvalues of £.3* The matrix (25) has the same trace as ¥ but
(possibly) different eigenvalues; its k' largest eigenvalue

)\(D_ Ak ifk<]J
L DU T
K

equals that of X if and only if k < J. The eigenvalues of £!/) have mean
Ly g
gL =7
(0)

independently of J. Likewise Ay’ = A by definition. Thus (°) = Al is the naive prior variance
matrix discussed in Sections 3.2 and 5. The parameter ] interpolates between X(?) and Z(K) = ¥,
It captures the “depth” of the agent’s conceptual knowledge: the larger is ], the more concepts he
knows and the richer is his mental model of 6.%-%

34We define /\%K) = Ak.

BGince Ay > -+ > Ag (by assumption), there are non-increasing returns to knowing more concepts (i.e., increasing J),
since each additional concept contributes a non-increasing share of states” prior variances. Intuitively, when the agent
acquires conceptual knowledge, he prioritizes concepts with more explanatory power. For example, he takes classes or
reads textbooks that provide “high-level summaries” before “digging into the details.”

36For example, a farmer could deepen his conceptual knowledge by learning about different nutrients that crops need
and fertilizers supply (e.g., nitrogen, phosphorus, and potassium). He could also learn about the nuances of nutrients
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We say the agent has “J-deep conceptual knowledge” if his prior on 6 has variance /). Sup-
pose he has such knowledge and designs an optimal sample. Then, by analogy to (19) and (20),
this sample has rank

—[ k ko1

) = . A -

RY) =max< ke {1,...,K}: A NG IE_ NG <T
ko LA

and value .

1 R )\(D 2 <R(]) 1 >

N == i S ) A

) = E = R E +7T ,
K =1 A ( > — )\]((I)

where T = nA/0?2 is the precision index defined in Section 5. For example, letting | = 0 yields the
rank R(*) = K and value

AT
K+7T
of an optimal sample collected by a naive agent. We refer to the difference

)

between rl/) and 7(*) as the “value of J-deep conceptual knowledge.” We characterize the rela-
tionship between R() and J in Lemma 4, and the relationship between IT1V/) and | in Theorem 3.

Lemma 4. There is a threshold |' € {0,...,K} such that

K if]<7J

foreach | € {0,...,K}. This threshold is non-decreasing in T.
Theorem 3. The value 1) of J-deep conceptual knowledge
(i) is non-negative,
(ii) equals zero when | = 0,
(iii) is non-decreasing in |, and

(iv) equals ITwhen | > R*.

he already knows about. Nutrients can take different chemical forms (e.g., nitrogen can take the form of ammonium
and nitrate) that have different effects when applied to different crops. Learning about these differences gives the
farmer new concepts that explain fertilizers” overall effects.
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Theorem 3 says that deeper knowledge is (weakly) more valuable. Intuitively, knowing more
concepts allows the agent to design samples that provide more payoff-relevant information.

The value of J-deep conceptual knowledge is bounded above by the value ITIK) = IT of “full”
knowledge, and attains this bound when | > R*. Thus, the agent gains no additional value from
knowing more than the R* concepts with the most explanatory power. This is because he ignores
the other (K — R*) concepts when he designs samples (since J; = 0 for each k > R*), so knowing
those concepts does not change his optimal sample.

For example, suppose the true prior variance matrix X has k' largest eigenvalue

_ Ka(l—a)kt

e = 1—(1—a)K

with 0 < o < 1. Then Ay, ..., Ak are strictly positive, have mean A = 1, are constant in the limit
as &« — 0, and undergo a MPS as a rises.*” This parameter determines the rate

Ak = Ak _

A e

at which Ay decays as k grows. Intuitively, the larger is «, the faster concepts” marginal explanatory
power falls. Thus, if « is larger, then states are more reducible.

Figure 2 shows how RU) and 11V) depend on | when (K, A,02) = (100,1,1) and A decays
at rate « € {0.01,0.02,0.03}. If | is sufficiently small, then the agent designs an optimal sample
with rank RU) = 100; otherwise, he designs a sample with rank RU) = min{J, R*}. The threshold
depth at which he switches from 100 to min{], R*} rises as the sample size # rises, consistent with
Lemma 4.3 The value I1V) of J-deep conceptual knowledge is increasing in | when | < R* and
constant in | when | > R*. This value is increasing in &, consistent with Theorem 1: conceptual
knowledge is more valuable when Ay, ..., Ax are more spread out. Likewise 1) is non-monotone
in n, consistent with Theorem 2: raising n allows the agent to learn more about the “in-sample”
coefficients ¥y, ..., yg() (raising 1)), but also prompts him to expand his sample and learn about
more coefficients (lowering T1U)).

7 More concepts or more data?

Finally, we study the trade-off between conceptual and statistical knowledge. Our model in Sec-
tion 6 provides a formal language for describing this trade-off: would the agent rather know more

37For each k € {1,...,K} wehave A, — 1 as « — 0 by L'Hopital’s rule. Moreover, the partial sum

K K(l—(l—tx)k>
;Ak T 1-(1-a)X

is non-decreasing in @ and is constant in « when k = K. Thus, by Lemma 3, the eigenvalues A4, ..., Ax undergo a MPS
when « rises.

3Here T = n because A = 02 = 1.
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Figure 2: Rank R() and value 1Y) when A1 = (1 — a)A; and (K, A,02) = (100,1,1)

concepts (i.e., increase the depth J) or have more data (i.e., increase the sample size 1)?%
Suppose the agent has [-deep conceptual knowledge and designs an optimal sample of size n.
The value 7t!/) of this sample indexes the agent’s welfare: it is larger when his minimized posterior
expected loss is smaller. Lemma 5 says the agent is better off with deeper knowledge or more data.
Intuitively, if he knows more concepts, then he can “ask better questions.” If he has more data,
then he can obtain better answers to his questions, making his posterior beliefs more precise and

his expected loss lower.
Lemma 5. The value 7t')) is
(i) non-decreasing in | and
(ii) increasing in n.
Now suppose the agent has a target value o > 0. Let
”51]0) =min{n >0: 7 > 0 }

be the minimum sample size necessary to attain this value. This size is smaller when the agent
knows more concepts and when states are more reducible:

3n contrast, Dominitz and Manski (2017) study the trade-off between having more data and “better” data.
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Theorem 4. Fix 7ty > 0. Then n%)
(i) is non-increasing in | and
(ii) does not rise when Ay, ..., Ax undergo a MPS.

Theorem 4 says that if the agent knows more concepts, then he can attain the same welfare
with fewer observations, especially when states are highly reducible. This is because he can design
better samples and extract more value from each observation, lowering the number he needs to
attain the target 7.

As in illustration of Theorem 4, suppose the true eigenvalues Ay, ..., Ax have mean A =1and
decay at rate « as in Section 6. Figure 3 shows how the minimum sample size nS{Q depends on the
welfare target 77y and depth | when (K,02) = (100,1) and a € {0.01,0.02,0.03}. Given 7, the
size ngo) is decreasing in | when | < R* and constant in ] when | > R*. Intuitively, if the agent
knows too few concepts, then he cannot design samples that focus on all of the “right” concepts.
Giving him more concepts empowers him to design better samples, extract more value from each
observation, and require fewer observations to attain 77p. However, once he knows all the “right”
concepts, giving him more does not change how he designs samples or the marginal value of each
observation. Then the only way to for him to obtain more valuable data is to obtain more data, thus
making ngo) constant in | > R*.

The curves in Figure 3 are indifference curves: they trace out sets of depth-size pairs (], n) that
allow the agent to attain different welfare targets 779. The slope of each curve equals the marginal
rate of substitution (hereafter “MRS”) between concepts and data. Intuitively, this MRS captures
the number of observations the agent would give up to know another concept. It depends on the
depth-size pair (], n), the target 7, and the parameter a indexing states’ reducibility. Raising this

parameter raises the rank R* of the optimal sample he would design if he had full knowledge (see
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Figure 2). So raising a can have three effects on the MRS between concepts and data:
1. If | < R* before and after « rises, then the MRS rises in absolute value;
2. If ] < R* before a rises but | > R* after, then the MRS falls in absolute value (to zero);
3. If ] > R* before and after « rises, then the MRS remains unchanged (at zero).

So if states are more reducible, then the MRS between concepts and data may be higher or lower,
depending on how many concepts the agent already knows. We defer analyzing this dependence
to future research.

8 Modeling assumptions and related literature

We assume states and outcomes are jointly normally distributed under the agent’s prior, and his
actions are real-valued and induce quadratic losses. This assumption allows us to derive a closed-
form expression for the value of conceptual knowledge. It is common in the literature on statistical
decisions (Hastie et al., 2009). It is also implicit in empirical economics papers that estimate linear
models via Ordinary Least Squares. Our agent has a linear model (5) of the unknown state vector.
Moreover, if his prior is diffuse, then his optimal actions equal the estimates obtained via OLS.

We also assume the agent knows how the states covary a priori. This separates the conceptual
knowledge embedded in his prior from the statistical knowledge he infers from data. It allows us
to measure his conceptual and statistical knowledge on independent scales (i.e., depth and sample
size), and to study their relative contributions to his welfare.

These assumptions impose a lot of structure on the agent’s decision problem. However, they
also give us a tractable and transparent framework for studying how conceptual and statistical
knowledge interact. For example, they help us isolate and quantify the benefit of having concep-
tual knowledge: it empowers the agent to design more informative samples. Our framework also
clarifies the mechanism through which samples become more informative and valuable: spread-
ing the eigenvalues of the prior variance matrix focuses the agent on fewer dimensions. Our
paper complements others on abstract decision problems (e.g., Blackwell, 1951, 1953; Frankel and
Kamenica, 2019; Whitmeyer, 2024), which offer different perspectives on what makes information
more valuable.

Our paper’s premise—that conceptual knowledge is valuable—is intuitive and important,
which is why it has been recognized by other economists: Lucas (1976) and Wolpin (2013) discuss
how conceptual knowledge is essential for policy evaluation; Armstrong et al. (2025) and Fessler
and Kasy (2019) discuss how it can be used to improve econometric estimators; Jackson (2019)
discusses how it can guide experimental designs. Our contribution is to define and characterize
the value of conceptual knowledge when making statistical decisions.

Our distinction between conceptual and statistical knowledge also appears in Ilut and Valchev
(2025). They consider an agent who learns via “abstract reasoning” and “integrating experience.”
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These learning modes correspond to our notions of conceptual and statistical knowledge. Ilut and
Valchev study a dynamic setting, and focus on the “learning traps” that arise from reasoning too
little or having the wrong data. In contrast, we study a static setting, and focus on the benefits of
reasoning correctly and having the “right” data.

[lut and Valchev model the cognitive processes that humans use to learn and make decisions.
These processes differ from those used by machines: whereas humans can use concepts and causal
reasoning, machines currently cannot (without human supervision). Instead they rely on pattern
recognition and data-driven prediction (Felin and Holweg, 2024).

This difference between humans and machines motivates papers comparing their predictive
performance (e.g., Kleinberg et al., 2018; Kiihl et al., 2022; Mullainathan and Obermeyer, 2022). We
shed light on when humans are likely to outperform “naive” (in the sense defined in Section 3.2)
machines: when parameters of interest are highly reducible (see Theorem 1), when data are noisy
or scarce (see Theorem 2), and when the sampling frame is limited (see Appendix Section A2.3).
We also shed light on why humans can outperform machines: humans have conceptual knowledge
that helps us “ask the right questions.”

Whereas we compare humans and machines implicitly, lakovlev and Liang (2025) compare
them explicitly. They study the “value of context”: how much predictive power one gains from
choosing the “right” covariates, relative to an algorithm that cannot make this choice. They show
that the value of context vanishes as one’s access to data becomes large. Similarly, we show that the
value of conceptual knowledge vanishes as one’s access to data becomes large (see Theorem 2).
Together, these results suggest that conceptual knowledge and data are substitutes in the “big
data worlds” ruled by machines, which can detect patterns in data without knowing why those
patterns arise. But Theorem 2 also suggests that concepts and data are complements in the “small
data worlds” ruled by humans: we can use our conceptual knowledge to learn more from small
samples. Moreover, Theorem 2 draws the border (the threshold 1) between these big and small
data worlds.

Our paper also connects to the literature on model-based learning. Andrews et al. (2025) find
that “black box” algorithms outperform models when predicting within domains, but are worse
at generalizing across domains.*? This is consistent with our idea that models embed conceptual
knowledge (see Appendix Section A1.2) and that such knowledge boosts out-of-sample predictive
performance (see Appendix Section A2.3). Fudenberg et al. (2022) propose a measure of model
“completeness”: the share of reducible prediction error that imposing a model reduces. Our paper
suggests a different notion of completeness: a model is “more complete” when it embeds deeper
conceptual knowledge.*!

In our analysis of deeper conceptual knowledge (in Sections 6 and 7), we assume there is a

405ee also Fudenberg and Liang (2019), Peterson et al. (2021), and Peysakhovich and Naecker (2017) for comparisons
of model-based and black box predictions.

#IMailath and Samuelson (2020) argue that “in practice, people work with models that are deliberately incomplete,
including the most salient variables and excluding others.” Indeed, Theorem 3 implies that the agent does not benefit
from using models embedding depths greater than the rank R* of an optimal sample.
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true model of the agent’s environment that he can know at different depths. This is in contrast to
the literature on model uncertainty and mis-specification, which considers settings where the true
model is unknown (Cerreia-Vioglio et al., 2025; Chatfield, 1995; Esponda and Pouzo, 2016; Hansen
and Sargent, 2001; Marinacci, 2015). In these settings, many authors advocate a “robust” approach
that imposes minimal structural restrictions and provides payoff guarantees across a range of
possible models (Gilboa and Schmeidler, 1989; Klibanoff et al., 2005). This is consistent with our
“naive” agent, who lacks conceptual knowledge, assuming a minimally restrictive prior. We add
to the model uncertainty and mis-specification literature by quantifying the value of knowing and
imposing the correct structural restrictions.

We also assume away any competitive or political forces that may lead the agent to choose one
model over another (Dasaratha et al., 2025; Izzo et al., 2023). These forces arise in the literature on
“models as narratives” (Aina, 2025; Schwartzstein and Sunderam, 2021; Eliaz et al., 2025). Papers
in that literature focus on settings where many models are plausibly true (e.g., financial markets
and political campaigns). In contrast, many real-world decisions are made in settings where there
is a single, objectively true model that can be learned through education and introspection.*? Such
settings are our focus in this paper. For this reason, we do not consider the issues that would arise
if the agent’s conceptual knowledge was mis-specified or supplied by a strategic communicator
with competing incentives. However, we believe these issues are interesting and worthy of future
research.

9 Conclusion

This paper introduces a simple idea: whereas information is valuable because it leads to better de-
cisions, conceptual knowledge is valuable because it leads to better information. We formalize this
idea and study its consequences. Conceptual knowledge is more valuable when payoff-relevant
unknowns are more “reducible”: when they can be explained with fewer common concepts. Its
value is non-monotone in the quantity and quality of available data, and vanishes with infinite
data. Deeper conceptual knowledge is (weakly) more valuable and compensates for having less
data. So we can improve interventions that give people data by giving them conceptual tools to
interpret data. We can also improve human-Al interactions by recognizing humans’ comparative
advantage: knowing how to “ask the right questions.”

Stemming from this paper are several avenues for future research. One is to analyze the trade-
off between concepts and data in a consumer choice setting. This would require specifying the
“price” of acquiring concepts vis-a-vis observations of data. Given a price schedule, one could ask
many questions about concepts and data: Are they complements or substitutes? Are they normal
or inferior? How do these statuses depend on the states” reducibility?

“For example, there exists an objectively true set of mechanisms through which fertilizers help crops grow. A farmer
could discover these mechanisms experimentally or be taught them (see Sankar et al., 2025), or may rely on heuristics
that capture some mechanisms but not all (e.g., the farmer may notice that two fertilizers intensify greening, but not
know they do so because they supply nitrogen).
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Another avenue is to make our framework dynamic. For example, the agent could take actions
that generate outcomes observed by future agents. This would allow us to study how conceptual
knowledge is “discovered” and passed down to new generations. This discovery process has been
studied by other authors (Carnehl and Schneider, 2025; Gans, 2025); blending their models and
insights with ours may bear fruit.

A third avenue is to study the role of conceptual knowledge in social learning and technology
adoption. This paper and its empirical sibling (Sankar et al., 2025) came from studying agricultural
settings, where heterogeneity in outcomes and the inability to generalize slows learning (Conley
and Udry, 2010; Munshi, 2004; Tjernstrém, 2017) and technology adoption (Alidaee, 2023; BenY-
ishay and Mobarak, 2019; Laajaj and Macours, 2024). These frictions could be removed by giving
people conceptual tools that enable them to generalize. This paper offers a framework for study-
ing such tools and their value.
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A Additional material

A1l Connection to statistical learning

This section connects our paper to the literatures on machine and statistical learning, which study
how to derive predictive functions from data.*® First, we show that our framework (described in
Section 3) can be used to study Bayesian learning about real-valued functions. Second, we show
how the agent’s prior derives from his approximating model of an unknown function.

A1.1 Function-state equivalence

Suppose there is a finite set X’ of “inputs” and a square-summable function f : X — R belonging
to the set

fz{gelRX: 2<g<x>>2<oo}

xeX
of such functions. Endow F with the inner product defined by

(8.8) =) g(x)g'(x)

xeX
for all pairs (g,¢') € F x F.Let |[X| =K,let¢: X — {1,...,K} be a bijection, and define

1 ifl(x) =k

0 otherwise

P (x)

for each x € X and k € {1,...,K}. Then the indicator functions ¢, ..., ¢x form an orthonormal
basis B = {¢}X_, for the inner product space (F, (.,.)). Now let 6y, ..., 0k be the coordinates of f

over {¢y}y:
K
f = Z ngbk.
k=1
The agent knows ¢y, ..., ¢k but not 6 = (04, ...,0x), so learning about f is equivalent to learning

about 0.4 Moreover, suppose the agent draws an input x € X uniformly at random, and predicts
the “output” y € R with conditional distribution

ylxf~N(f(x)0)

given x and f. His “prediction rule” f € F maps each realization of x to a prediction f(x) of y.
This prediction induces a posterior mean squared error (MSE)

E|(y—f(x)) ] %8| = E[(f(x) = () | x, S| + 0

43g5ee Bishop (2006) or Hastie et al. (2009) for textbook treatments.
4 Assuming 6 is normally distributed is equivalent to assuming {f(x)},cx follows a Gaussian process. Such pro-

cesses arise in the economic literature on learning and information acquisition—see, e.g., Bardhi (2024), Davies (2024),
Ilut and Valchev (2025), or Laajaj and Macours (2024). See also Bishop (2006, Section 6.4) or Rasmussen and Williams
(2006) for more information about Gaussian processes and their applications.
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given x and the sample S, where E takes expectations with respect to the joint prior distribution of
input-output pairs. The agent chooses f to minimize the mean posterior MSE across realizations
of x:

A o1

fe argmmm Y E [(y —g(x))* | x,S]. (A1)
geF xeX

The optimal actions ay, . . .,ax defined by (3) are precisely the coordinates of f over the basis B.

By Lemma 3, these coordinates equal the posterior mean coordinates of f. The minimized mean

posterior MSE

min & ¥ E|(y— f(x))* | %S| = E[L(B,0) | S] +

equals the expected loss (10) plus a constant 02 that arises due to the irreducible randomness in
the outcome y. Thus, the prediction problem (A1) is equivalent to the choice problem (3).

Al1l.2 Approximating models

Suppose the agent knows about a collection ¢, ..., 1; € F of “features” that (partially) mediate
the relationship between inputs and outputs.*® These features are linearly independent (but not
necessary orthonormal) elements of the function space . They map inputs to known, measurable
quantities. For example, if the inputs are fertilizers, then the features could map fertilizers to
quantities of different nutrients.

The agent uses 9y, ..., 1Pj to build a “model” m € F approximating the unknown function f.
This model is a linear combination of features: there is a(n unknown) vector = (B4,...,B;) € R/
such that

]
m(x) =Y Br(x)
k=1

for each x € X. Then the derivative
om(x)

opi(x) P

of m(x) with respect to i, (x) does not depend on the input x. In this way, the model m captures the

generalizable structure of f that is common to all inputs. In contrast, the model’s approximation
error
e=f—-m

captures the idiosyncrasies specific to each input.
The agent uses his knowledge of 11, ..., 1j to construct his prior IP on 6. First, he identifies the
subspace

F™" = span{y1,..., s}

#5This ] is the same as the depth parameter defined in Section 6.
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of F spanned by the features. It corresponds to a subspace
K
O"=.0€0O: Zﬁkgbke}"m
k=1

of the Euclidean space ® = RX containing the unknown coordinate vector §. Concretely, if 6/ =
(9{, e, 9%) contains the (known) coordinates of the jth feature P; over the orthonormal basis B,
then

" = span{@l, .. .,0]}

is the subspace of ® spanned by the vectors 6%, ...,6/.

Next, the agent constructs an orthonormal basis {vk}llzl for ™ (e.g., by applying the Gram-
Schmidt process to 61, ..., 6)). If | < K, then he also constructs an orthonormal basis {v; }X_ 111 for
the orthogonal complement

OF = {196@:19T19’:0f0ra1119’6®m}

of @". Then {v;}K , is an orthonormal basis for ©. Letting v = (71,..., 7x) contain the coordi-
nates of 6 over {v;}KX_, yields (5); the eigendecomposition (6) of £ follows. Thus, the agent’s prior
on 6 derives from his prior on v, which derives from his knowledge of ¥, ..., ¢; (which define
the model m).

A2 Valueof S

Consider the sample S. Proposition Al says that the value 77(S) of S is non-negative, grows as S
grows, and shrinks as ¢ grows.

Proposition A1l. The value 7t(S) of the sample S
(i) is non-negative,
(ii) does not fall when S gains observations, and
(iii) falls when o2 rises.

Sections A2.1-A2.3 discuss the values of samples with specific structures.

A2.1 Singleton samples

Suppose S = {(w™M,yM))} contains a single observation. Then the Gram matrix G = w() (w)T
has eigenvalues 6; = 1and 6, = - - - = dx = 0. Substituting them into (17) gives us bounds on the
value of S:
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Proposition A2. Suppose S = {(w),y ()} contains a single observation. Then its value

(w(l))TZZW(l)
S) = A2
7T( ) K((w(l))TZw(l) +(712,) ( )
satisfies
)L%( * *ok /\%
___K < <
K+ = ") < kv oy (A3)

where * holds with equality if 2w = Axw™) and +x holds with equality if Zw™® = A,

The value of {(w),y(1))} is largest when w(!) is an eigenvector of X with corresponding eigen-
value Ay = max{Ay,..., Ax}. It is smallest when w(!) is an eigenvector of X with corresponding
eigenvalue Ax = min{Ay,..., Ag}. Intuitively, the more “weight” w® puts on directions in which
the prior variance of 6 is large, the more valuable it is to observe (w(1), y(1)) because the larger is
the variance reduction it delivers. This is especially true when there are few dimensions (i.e., K is
small) and when the signal y(!) is precise (i.e., o7 is small).

For example, suppose X is the matrix (8) constructed in Example 1. Let K = 2 and suppose S =
{(w™,yM)} contains a single observation with

wV) = (sin(7t), cos(7t))

and —1/2 < t < 1/2. Increasing t from —1/2 to 1/2 rotates w!) clockwise from (—1,0) to (1,0).
The value*® 2 4
1+ 2psin(27t
2((1+ psin(27tt))o? + 03)
of § attains its minimum when ¢ = —1/4, in which case w® = (=1/ V2,1/ \@) equals the unit
eigenvector v, of X with the smallest corresponding eigenvalue. In contrast, the value of S attains
its maximum when t = 1/4, in which case w!) = (1/ Vv2,1/ \@) equals the unit eigenvector v;

of ¥ with the largest corresponding eigenvalue. Figure Al shows that 77(S) rises monotonically

as t rises from —1/4 to 1/4, which lowers the angle between w® and vy from 90° to 0°.

A2.2 Representative samples

Suppose the covariates w(l), .. .,w(”) in S are binary vectors: for eachi € {1,...,n}, there is an
index k; € {1,...,K} such that w() has kth component

(i) 1 ifk=k
wy =
0 otherwise.

Then each outcome

46We obtain (A4) by substituting K = 2, the prior variance matrix (8), the covariate w) = (sin(7tt), cos(7tt)), and the
sample size n = 1 into (A2).
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Figure A1l: Value (A4) of observing S = {((sin(7tt), cos(7tt)),y™"))} when 6 has prior variance (8)
and (K,0?,02) = (2,1,1)

is a “pure signal” of the state 0,. Moreover, the Gram matrix G is diagonal: its kk™ entry
G = ’{1 S {1,...,K} 1k = k}’

counts the outcomes in S that are pure signals of 6. If Gy1, ..., Gkk are equal (to n/K), then the
eigenvalues of G are also equal (to n/K). These eigenvalues characterize a sample that contains
equal information about each state.

Accordingly, we say S is “representative” if it induces a Gram matrix with equal eigenvalues.
Then the lower and upper bounds in (17) are equal, and so S has value

-1
() :ié(@— (;}{+K’;> >

This value is larger when the eigenvalues Ay, ..., Ax of ¥ are more spread out:
Proposition A3. If S is representative, then its value 7t(S) does not fall when A4, . .., Ax undergo a MPS.

If S is representative, then it contains equal information about each component of 6. But there
are diminishing returns to having more information about a given component. So if the prior vari-
ances of 1, ..., 7k change in a mean-preserving way, then the increased reduction of the higher
variances more than offsets the decreased reduction of the lower variances, thereby raising 77(S).

For example, suppose X is the matrix (8) constructed in Example 1. Then the eigenvalues A; =
(1+p(K—1))c?and Ay = -+ = Ax = (1 — p)c? of T undergo a MPS when p rises. So if S is
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representative, then its value

1/1 n \ ! 1 1 n\ !
2

. _ _ 1_

m(§) =0 K<A1 KO’%) ( K></\K Ka,%)

must be non-decreasing in p. Indeed, the derivative

0(S) _ (1_ N\ L 1\ (14 )"
3 ‘(1 K>” <A%< A%)<”Kag>

of 71(S) with respect to p is non-negative because Ax > A;.

A2.3 Non-spanning samples

If the sample S is not representative, then its value can fall when the eigenvalues of £ undergo a
MPS. This happens, for example, when S = {(w(!), (1))} is a singleton and w!) is an eigenvector
of ¥ corresponding to an eigenvalue that falls under the MPS.#” Such a sample is “non-spanning”:
the rank
R =max{k € {1,...,K} : & > 0}
of the Gram matrix G is strictly less than K, so there are components of § about which S contains
no information because they are outside the column space
col(G) = span{wy, ..., wk}
= span{w(l), .. .,w(”)}
of G. The agent cannot learn about these components from S directly. But he can learn about them

indirectly if he knows how they covary with the components that belong to col(G).
For example, suppose the observations in S are pure signals of 6y, ...,6g. Then

col(G) = {v € RX : v = 0 for each k > R}

is the subspace of RX spanned by the first R standard basis vectors. So the first R components of 6
are “on-support” but the last (K — R) components are “off-support.” Let s = (6y,...,0r) contain
the first R components of 6 and define
X1
Gr=V(os)"| ¢
LRk

for each k € {1,...,K}.*® Then the posterior variance matrix has trace

NACARS)) ZVGHS + Y & V(bs | S)E+ Y V(b | 6s), (A5)
k>R k>R
Sampling error Extrapolation error

47For example, if § has prior variance (8), then the value of S = {(w(1),y(1))} is decreasing in p when w(!) = v,.
48The matrix V() is invertible because it is a leading principal submatrix of an invertible matrix.
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where
V(6 | 0s) = V(0) — &F V(0s)Ek (A6)

is the prior variance of 6y left unexplained 05.%° The first two terms on the RHS of (A5) are “sam-
pling errors” that depend on how much information S contains about the on-support compo-
nents 0y, . .., 0r. The third term is an “extrapolation error” that depends on how much information
these components contain about the off-support components 6r1, ..., k. Whereas the sampling
error can be reduced by collecting more (or less noisy) data on 6y, ..., 0g, the extrapolation error
cannot. It can only be reduced by making the on-support components of 6 contain more informa-
tio about the off-support components.
For example, suppose X is the matrix (8) constructed in Example 1. Then

(1-p)(1+pR)0?
1+p(R-1)

V(6 | 6s) = (A7)

for each k > R and so the extrapolation error

_ (1=p)(1 +pR)(K = R)0?
kg‘/(f)k!@s)— 1+ p(R—1)

falls as the correlation p rises. It equals (K — R)¢c? when p = 0, in which case 6, ...,0g provide
no information about 6g 1, . ..,0x and so V(6x | 6s) = V(6) = ¢? for each k > R. It equals zero
in the limit as p — 1, in which case 6y, ..., 0k are fully determined by the coefficient y; on their
common component and so V(6y | 6s) = V(6 | 1) = 0foreach k € {1,...,K}.

If, in addition, the observations in S have no noise, then V(6 | §) = 0 for each k < R and
so S has value

k k>R

=1
(1 RO R
(+pR-1)K )7

lim 71(S) = ;(f(wek) —0)+ Y (V(6) — V(6 | 93)))

This value rises as p rises, equals Ro?/K when p = 0, and equals ¢? in the limit as p — 1. Taking
the limit as K — co gives )
. . p“Ro
dm, m 7S = T pR 1)

which is bounded away from zero if and only if p > 0. So if there are many states, and the agent
has noise-free data but a limited sampling frame, then his sample has value if and only if he knows
the states have a common component that explains some of their prior variances.

This example highlights the importance of conceptual knowledge when making out-of-sample
predictions. If the agent had no conceptual knowledge (and so assumed p = 0), then his extrapola-
tion error could be arbitrarily large and the value of his sample could be arbitrarily small. Having

YWe derive (A5)—(A7) in Appendix B.
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conceptual knowledge allows him to use data on the on-support components of 6 to learn about
the off-support components. This lowers his extrapolation error and ensures his sample has some
value, even if the sampling frame is limited.

A3 KL divergences

In Section 3.2, we claim the KL divergence (7) quantifies how much the agent’s conceptual knowl-
edge allows him to reduce 6. Proposition A4 justifies this claim. It says the KL divergence from
the true prior IP to the naive prior IP(*) is (weakly) larger when states are more reducible (i.e., when
the eigenvalues A4, ..., Ak of X are more spread out).

Proposition A4. The KL divergence from IP to IP(°)
(i) is non-negative,
(ii) equals zero when A4, ..., Ak are equal, and
(iii) does not fall when A1, ..., Ax undergo a MPS.

For example, suppose X is the matrix (8) constructed in Example 1. This matrix has eigenval-
ues Ay = (1+p(K—1))¢?and Ay = --- = Ax = (1 — p)o?, which equal A = ¢ when p = 0 and
undergo a MPS when p rises (see Section 4.4). So, by Proposition A4, the KL divergence

In(14+p(K—-1)) +(K—-1)In(1 —p)

D (P || PY) = — 2
from the true prior IP to the naive prior P(®) must equal zero when p = 0 and be non-decreasing
in p. Indeed
- 2
0=0
=0,
and
0 K-1/ 1 1
= 0)y = —
apDKL(IP 1P == <1—p 1+p(1<—1)>
>0

with equality if and only if p = 0.
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B Proofs

B1 Claims in Section 4
B1.1 Proof of Lemmal

We have

E[L(6,a") | 8] = kzllE [(6x — a)* | S]

*Z( [0 | S] — ap)? +V(9k|5)>

foralla’ € RX. So E[L(6,a’) | 8] attains its minimum value

K
min E[L(0,d) | S] = ;;v(ek 1)

a'eRK

when a; = E[f; | S| foreachk € {1,...,K}. O

B1.2 Proof of Lemma 2
Our proof of Lemma 2 uses a well-known property of normally distributed random variables:

Lemma B1. Let n; > 1and ny > 1 be integers, and let z € R™ "2 be normally distributed with mean y
and variance . Partition z = (z1,z2) into vectors z; € R™ and zp € R™, and let y = (yy, p2) and

> >
s _ | X1 T
2o1 2o

be the corresponding partitions of y and X. If Xy is invertible, then
z1 |z ~ N(]M + 212555 (22 — pa), 1 — Z1222721221)-
Proof. See Bishop (2006, p.87) or DeGroot (2004, p.55).

Proof of Lemma 2. Lety = (y,...,y™)and u = (uM,...,u") be the n-vectors of outcomes and
errors, and let

W=l . o] !
be the n x K design matrix. Then we can write (2) in vector form as
y=W0+u.
Consider the concatenation of 6 and y. It is normally distributed with variance

(E])-

X W’
W WEIWT + 021,
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under the agent’s prior. Since observing § is equivalent to observing W and y, Lemma B1 implies
V(e |S)=V(E[Wy)

=¥ —xW’ (WZWT + 031,1) Twx

1\
UM

because G = WIW. O

B1.3 Proof of Proposition 1
Our proof of Proposition 1 uses the following fact about sums of real, symmetric matrices.

Lemma B2. Let n > 1 be an integer, let A € R"*" and B € R"*" be symmetric matrices with eigenval-
uesay > --- > agand by > --- > by, and let C = A + B have eigenvalues c¢; > - -+ > ¢y,. Then

k k k
(@ +bajp1) <Y ¢ <Y (aj+1b))
j=1 j=1

j=1
foreach k € {1,...,n}, with equality when k = n.
Proof. See Horn and Johnson (2012, Theorem 4.3.47).

Proof of Proposition 1. Now

-1
()= g (s - (14 5e) 1))

by Lemma 2. Moreover, defining Z = VT() gives

—1 -1
>l lG = (VA VT 4+ lVVTQAQTVVT
oz oz

-1
= V<A—1 + 1ZZAZT> 4

u

1 -1
tr ( (2—1 + 12@) ) = tr ( (A—l + 1ZZAZT) )
Uu Uu

by the orthogonality of V and the cyclic property of matrix traces. So (17) is equivalent to
K 71 5k>1 o < 1 AN T PP S
-+ = < tr| (AT + ZAZT) < < + +) . (B1
(5 o 7 ot a )
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Now A~!
Moreover, since Z is orthogonal, the matrix

1
B=—
0-11

is real, symmetric, and positive definite. It has kth largest eigenvalue ay = 1/Ag_j+1 > 0.

ZAZT

is real, symmetric, and positive semi-definite. It has k' largest eigenvalue by = 5;/02 > 0. Define

kk
" = ag + b1

_ 1 Ok k41
AK—kt1 g
>0
and
C; = ay + by
1 a
Ak-ki1 O
>0

foreachk € {1,...

,K}, and consider the matrix C =

A1 + B with k' largest eigenvalue c;. This

matrix is positive definite and so ¢ > 0 for each k. Moreover, by Lemma B2, we have

k

Lo

j=1

SRE

foreach k € {1,...,K}, with equality when k = K

Now define g(z) = 1/z forallz > 0. Then g : (0,

Il >
,_.l ]
L,

c0) — R is convex. So, by Lemma 3, we have

K K
1 1 1
s Zf 27 (B2)
k=1 %k k=1 =1 %
But
K1 K71 g\
==Yl itz
k=1 %% k=1 \" Ou
and
y 1 f(l 5Kk+1>
% oM oy
by the definitions of c]*,...,cx" and cj, cx, and
K
1
Z — =tr (C‘l)
k=1 Ck
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by the definition of C. Substituting these expressions into (B2) yields (B1), from which (17) follows.
It remains to show when the bounds x and *x hold with equality.
Suppose wy = vg_jy1 foreachk € {1,...,K}. Then

zz[vl UK}T{UK vl}

1

1

is the K x K anti-diagonal matrix with jkth entry

1 ifj+k=K+1
0 ifj+k#K+1

So the inverse of

ok
1
AL+ EZAZT =A1+

1
2
u O-M
ok

-1 K -1
tr <A1 - 1ZZAZT> =) <1 + 5K"2‘“>
o =1 \ M o

and thus x holds with equality.
Now suppose wy = vy for each k € {1,...,K}. Then Z equals the K x K identity matrix. So the

has trace

inverse of
AT+ %ZAZT =A+ %A
UM UM
has trace : » L g
tr<<A1 +032AZT> ) — ](:Zl</\k+a’;2[>
and thus x* holds with equality. O

B1.4 Proof of Proposition 2

Consider the constrained minimization problem (18). We can ignore the constraint that J; is non-
increasing in k because it does not bind (see below). So the problem has Lagrangian
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where 7, > 0 is the Lagrange multiplier on the non-negativity constraint 6y > 0 and 17 € R is the
multiplier on the sum constraint. Now

-3
9090 | g if j £k
for each pair (j, k) € {1,...,K}?, from which it follows that £ is convex in the vector (43, ..., k)

whenever it has non-negative components. So if 47, ..., dg solve (18), then they satisfy the first-
order conditions (FOCs)

ot
90

VAR A
2\ M o2 1

the complementary slackness conditions 0 = 7,6}, and the sum constraint 67 + - - - + 6 = n.

0

Suppose the non-negativity constraint on J; binds. Then the FOCs and complementary slack-
ness conditions imply

0 <
A

_]’] O-LZl’

which holds if and only if A < 0,,/7. But Ay is non-increasing in k and the FOCs imply that 7 is
strictly positive. So there is an integer ko € {1,..., K} such that §; > 0if and only if k < ko.
Suppose k < kg. Then 77 = 0 and so the FOCs imply

2 2
o _@+5;

N/

The left-hand side is constant in k, from which it follows that

2 2

ULI * Uu *
TR R TR
e /\k+k

and therefore , .

Then the sum constraint implies

ko (1 1
n= 0] + 0, (—))
k_21< 1 u /\1 /\k



Thus

for each k < kg and &; = 0 for each k > ko. Then

K71 (5;;)—1 b1 1(n L{1&1 1 < )‘1
—+k) =Y (—+5(+d - +
k:le <Ak oz k;l A oz \ ko “\ ko j=1 Aj Ak kgo

—k2<§ L, ”>_1+2Ak

k>ko

is non-increasing in kg when kg < R*. Thus, the eigenvalues 67, ..., defined by (21) solve (18).
They are non-increasing because Ay, ..., A are non-increasing. Moreover, Proposition 1 implies

K S5* -1
= () )

k=1
-1
1[& 1 n
=— A — (R*)2<Z+> + Y A
K (kzi ( A oy k>R
= 7'[*,
with equality if (22) holds. O

B1.5 Proof of Lemma 3

The result follows from establishing three equivalences:

1. (i) <= (ii). Rothschild and Stiglitz (1970, Theorem 2) show that (i) is equivalent to
(i) [, g(z)dF'(z) > [J°g z) for all convex functions g : (0,00) — R,
which is equivalent to (ii) by the definitions of F and F’.

2. (ii) <= (iii). Consider the K-vectors A’ = (A},...,A}) and A = (A4,...,Ak). Arnold (1987,
Theorem 2.9) shows that (ii) holds precisely when A’ majorizes A. But the components of A’/
and A are non-increasing, and so A’ majorizes A if and only if (iii) holds.

3. (iii) <= (iv). Foreach k € {1,...,K} we have

b b ) (B )

>k 1 >k

K K
/ /
ol DO Il el DD DR
j=1 j=1 >k >k
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from which it follows that (iii) and (iv) are equivalent. O

B2 Claims in Sections 5-7
B2.1 Proof of Theorem 1
Our proof of Theorem 1 invokes the following lemma.

Lemma B3. The value 7t* of an optimal sample does not fall when A4, ..., Ax undergo a MPS.

R* € argmin | ko| — —+t = + Ak
koe{1,...K} ko\/ = A o k>ko

ko ko1 o\
= arg max ZAk—k% ka_kp

Proof. Now

koe{1,...K} \ k=1 k=1

from the proof of Proposition 2. So if A4, ..., Ax undergo a MPS, then R* changes only if doing so
makes S more valuable. So it suffices to show that for fixed R*, the MPS does not lower the RHS
of (20).

Let A} > --- > A} > 0 be the eigenvalues after the MPS. By Lemma 3, the difference

R* R*
=Y M- Y M (B3)
k=1 k=1

is non-negative. The MPS raises the first bracketed term on the RHS of (20) by 5. So it suffices to
show that the MPS lowers the second bracketed term by at most #:

R -1 R ¢ -1
<R*)2(ZM{+;§) _(R*)2<Z2\k+;> <7 4

k=1 k=1

s’ S

Consider the first term S’ on the LHS of (B4). This term is largest when the harmonic sum

, RZ 1
H = —
= M
is smallest. Defining 17, = A} — Ay for each k € {1,...,K} gives
H = S 1
k=1 )Lk + 7k
and 771 + - - - + g+ = 1. Lemma 3 implies
k
Y 7 =0
j=1

50



foreach k € {1,...,R*}. Thus

H > H* = fi 1
- = Ak e

where 77, ..., 17 solve the constrained minimization problem

o1
min
Mot ER = Ak + 1k

subjectto Ag 47 > 0foreachk € {1,...,R"},

£ (B5)
i > 0foreachk € {1,...,R"},

j:

R*

and ) e =1.
k=1

1

Setting A, = Ay + 77 foreach k € {1,...,R*} yields the “worst-case” MPS that maximizes the first
term S’ on the LHS of (B4) given the difference (B3).

The differences 77, ..., ;. that solve (B5) are non-negative. To see why, notice that 7; < 0 is
infeasible and assume towards a contradiction that 77; < 0 < min{7,..., 172‘71} for some ¢ > 1.
Then

' =max{k e {1,...,0—1}:y} >0}

must exist, for otherwise 77, ..., 77z would violate the constraint

4
> =0
j=1
Defining
ny+n, ifk=10
=10 if 0 <k=1¢
UM otherwise
gives
i T{ggw<ﬁy<k<e
=1 = Z}‘:l 1 otherwise

foreach k € {1,...,R*}, from which it follows that 171r S, ;71‘;* are feasible. But Ay > Ay and 7}, >
0,and so Ay + 1, > Ay > 0. Thus

R R T SR
Ae+np+n;  Ag o Ap+ny o Agtg
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because g(z) = 1/z is a strictly decreasing and convex function of z > 0. But then

R 1 1 1 1
k:zl)\k"’_ﬂli_k<£’Ak+77;ck+Af’+772"+772+)Tf+1§g)\k+77]t
< 1 + 1 n 1
Ap+np Aot kg{g/,g}/\k+77;<k

R
=R R

contradicting the optimality of 77, ..., 77}.. So they must be non-negative because ¢ cannot exist.
Finally, we use the non-negativity of 75, ..., 77} to establish the upper bound (B4) on (S’ — S).
Letk € {1,...,R*} and consider the derivative

s (rR(E 1 a2\
mﬁZAXEM+ﬁ)

of S with respect to Ax. This derivative is non-negative. It is also bounded above by one, since
R* x
Late
=M o T A

by the definition of R*. So S is a 1-Lipschitz function of Ay, ..., Ag+: changing Ay by #; changes S

by at most |77|. Letting S* be the value of S that obtains from changing Ay by #; gives

S _Ss<s—s
<|s*—5g|

K

* Kk

< Y lnil,
k=1

where x uses the maximality of S* (induced by the minimality of H*) and *x uses the Lipschitz
property. But 77, ..., 17z. are non-negative and sum to 7, from which the bound (B4) follows:

K
S'-S< ) m
k=1
=1. ]

Proof of Theorem 1. 1t suffices to prove (ii) and (iii), which together imply (i). This is because every
distribution of Ay, ..., Ak is a MPS of the degenerate distribution under which they are equal (to
their mean A).

Consider (ii). If Ay,..., Ak are equal, then Ay = A for each k € {1,...,K}, and so R* = RO
and 77* = (0 by definition. Thus IT = 7* — (%) = 0.

Now consider (iii). The value 71(*) of the naive agent’s optimal sample depends on Ay, ..., Ag
via their mean A only. It does not change when A4, ..., Ax undergo a MPS. Since 7t* does not fall
under the MPS (by Lemma B3), neither does Il = 7* — (), O
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B2.2 Proof of Theorem 2

Define

[k &1
GT=Al——) —
‘ (Ak ]'Z;/\j)

foreach k € {1,...,K}. Then y = 0, and for each k < K the difference

1 1
T T = kA —
ek (Akﬂ )\k>

is non-negative because A > 0 and Ay, 1 < A¢. So T is non-decreasing in k and hence
R*=max{ke{1,..., K} < 7}

is non-decreasing in 7. Now define 7x41 = o0 and suppose T € [Tk, Tx+1) for some k € {1,...,K}.
Then R* = k and so

=TI,

_ — -1
A &AL (& A Kt

Each piece Il is continuous in 7. Moreover, for each k < K the difference

_ _ -1
2 k+1 k A A
Hk+1_Hk: K(k+1 <Z —|—T) _k2<21)L]+T —%
j=

between consecutive pieces converges to zero as T — Ti41. It follows that IT is continuous in 7. So

to determine whether I is increasing or decreasing in 7, it suffices to analyze its derivative

_ — -2
MG, A (& A K \?
e k| (};M”> (&) (Be)

on each piece IT.
Consider the final piece
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If Ay,..., Ak are equal (i.e., if A; = Ag), then Ay = A and 7, = 0 for each k € {1,...,K}, and so

I =TIl
M=Axg M=Ax
_ —1
| KA
= KA — =47
=0

for all T > 0. Whereas if Ay, ..., Ak are not equal (i.e., if Ay > Ak), then

by Jensen’s inequality and the definition of A, from which it follows that

_ -2
[ (&R ) 1 \?
= KA —+7T —< )
A>Ag (<]Z1 Aj K+t

is strictly negative. Thus I1 is non-increasing in T whenever T > 1x. Moreover,

ol Ik
oT

Iim IT = lim Ik

T—00 T—00
K 0 -1
= 1 — —
KATI—EEO K+t ];A]+T
=0.

Soif Ay,..., Ak are equal, then Tx = 0 and the result follows from letting 7/ = 0.

It remains to show that if Ay,..., Ak are not equal, then there exists T’ € (0, Tx) such that IT is
increasing in 7 if and only if T < 7.

Suppose T € [T, Tgy1) for some k < K. Then IT is increasing in 7 if and only if (B6) exceeds
zero, which happens precisely when

T< T

(-5

So Iy is decreasing in T € [T, Tet1) if T, < T, increasing if 7/ > 444, and increasing-and-then-

decreasing if 7, < 7} < 1. Now 7/ > 71 if and only if




whereas 7/ < Tiyq if and only if

K K-(k+1) 1
Ko K-(ktl) 1
A Ak—}—l ]‘:1)\]'
So defining
K-k &1
=3l

j=1 7Y

foreachk € {1,...,K} gives 7] € [, Tey1) if and only if K/A €[5k, #k41). But 174 is non-decreasing
in k because Ar 1 < A and therefore

1 1
k1 — Mk = (K_k><7\k+1 - 7\k>

> 0.

It follows that 7/ € [Ty, T+1) for at most one k < K. But there is at least one such k when A4, ..., Ax
are not equal. To see why, notice that

is strictly positive when A; > A, which holds precisely when Ay, ..., Ak are not equal, in which case
the value I is decreasing in T whenever T > tx. So Il is initially increasing in T and eventually
decreasing in T, which, by continuity, means its derivative with respect to T changes sign at least
once. Therefore, if Ay, ..., A are not equal, then there is a unique k < K such that 7| € [7, Tg41)-
Letting 7/ = 7/ > 0 completes the proof. O
B2.3 Proof of Proposition 3
Our proof of Proposition 3 invokes the following lemma.
Lemma B4. Suppose 0 has prior variance (8) with o> > 0 and p € [0,1).
(i) There is a threshold p’ € (0,1) such that
K ifp</p
R* — ifp < p (57)
1 ifp>p.

(ii) The value 7v* of an optimal sample rises when p rises.
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Proof. Consider (i). If Ay > Ay = --- = Ak, then
o 1oif o+ 5 < g
K otherwise.
Now (8) has eigenvalues A; = (1+ p(K—1))0?and Ay = --- = Ax = (1 — p)o?. So R* = K if and

only if
1 1 n
0< - + =
(1+p(K=1))0* (1-p)o>  oF

1 L _ 1 +T
- 02 1+p(K=1) 1-p '
The bracketed term on the RHS is continuous and decreasing in p, strictly positive when p = 0,

and unbounded below as p — 1. So, by the intermediate value theorem, there exists p’ € (0,1)

such that (B7) holds.
Now consider (ii). Substituting (B7) into (20) gives

-1
1) Tk A — K (Zszl i+ g%) ifp <p'

*

T = — -1
K /\1—(%1—{—‘%) ifp>p
_K? 1 K-1 - ifo <o
o? | K=K (HP(K*U T +T> ifpsp (B8)

-1
K 1—|—p(K—1)—<m+T) ifp >/,

which is piecewise increasing in p:

o7, 1 K—1 2 1 1
ap[n ‘PSP’] :K(K_l)(Hp(K—l) 1 +T> ((1—9)2 - (1+p(K—1))2>

>0

with equality if and only if p = 0, and

o . —1)e? 2
39 % o] = (KI<1)0<1+ (oo m) )

> 0.

Proof of Proposition 3. Suppose the sample S is optimal. Then its value 7t* equals

ot

- K+t

20

when p = 0. Now 71* is increasing in p (by Lemma B4), whereas 71() is constant in p. So IT =

* — 110 equals zero when p = 0 and is increasing in p.

56



It remains to prove (iii). Now (8) has eigenvalues A; = (1+ p(K—1))c?and Ay = - -+ = Ag
(1 — p)o?, which have mean A = ¢2. Defining

/11
TK:A()\Z_)\I>

K
(1-p)(1+p(K—-1))

gives

e 1 n 1
1f71+;52E

)1 if T < 1x
K ift> 1,

which when substituted into (20) gives

e 1 1
K

1 1 KT
0—2 1+p(K_1)_<l+p(Tl)+T> ~ K+t lfT<TK
= — -1
K K2<(K—|—T)—1_ (26, & +1) > if T > 1.

The first piece is (weakly) concave in 7: differentiating it with respect to T gives

;T[H!T«K] = i((wp&_n”y— <K§T>2)'

which is strictly positive if and only if

pK

/:7
TSTET K-

In contrast, our proof of Theorem 2 shows that the second piece (with T > k) is non-increasing
in 7. But T < 1g, from which (iii) follows. O

B2.4 Proof of Lemma 4

Define

foreach k € {1,...,K} so that

R* =max{ke{l,..., K} : % < 7}
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as in the proof of Theorem 2. Fix | € {0, ...,K} and define

k
Oy * v 1
WEMN T L
A =LA
0 if]=0
=A ALk_Z;‘(:lA% if[>0and k < |

L -yl L if]>0andk > ).
K

foreach k € {1,...,K}. Then Tl(] ) = 0, and for each k < K the difference

0 if]=0
if]>0and k< ]—1

=

(% _

() N _x ks

Ter1 — T A 1
-

0 if [ >0and k > J.

_
—
= >

~

>
=

> if]>0andk =]

is non-negative because Ay < A and /\g) < Aj. So Tk(] ) is non-decreasing in k and
R = max{k e{1,...,K}: T,f” < T}.

Define Téo) = 0 and notice T]U) =... = TI(<]). Soif T > TIU), then RU) = K;if T < T](D, then

RY) = max{k e{1,...,]}: Tk(]) < T}
= min{J,max{k € {1,..., K} : i < 7}}
= min{], R*}.

Butif | < K, then

9)

is non-negative because Aj; 1 < Aj. So T is non-decreasing in |, from which it follows that

J Emax{k €{0,...,K}: 'Cj(j) < tforeachj e {0,...,k}}

exists and

RO — K ifj<7J
min{J,R*} if]>].

Clearly ] is non-decreasing in 7.
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B2.5 Proof of Theorem 3

Now (i) follows from (ii)—(iv), while (ii) follows from the definition of II/) = () — 71(9) and (iii)
follows from Lemma 5(i). For (iv), suppose | > R*. Then R = R* by Lemma 4, so

) -1
1 (& R n
N — = (D _ (p*)2 - "
T K(kzl/\k (R¥) (Z I(<])+Ul%> )

k=1
1 i 5 (i 1 n )1
K\i= =M o
= 7‘[*
and hence T1/) = IT by definition. O

B2.6 Proof of Lemma 5
We prove (i) and (ii) separately:

(i) It suffices to show that Agl ),. .., Ag) undergo a MPS when ] rises. Then (i) follows from an
argument similar to that used to prove Lemma B3.

Fix ] < K. For each k € {1,...,K} we have
0 ifk<7J
AWV AD =00 A0 k=741
P AR\ TS SNy |

and hence
’0 ifk<]J
K0 ) ()
E/\j _ZA]' =AM A ifk=J+1
=1 = Ao =M+ (= ) (A = A) itk > T+
\
0 ifk<]J
=AY ifk=J+1 (B9)

(K=K (AL =AY itk 41,

because Ay = (K — ])Ag) —(K—=(J+ 1))/\%””. We also have



(J+1)

because Ajy1 > --- > Ag. Likewise Ajy1 > Ay and so
1 1
A(I) _ A(]Jrl) — p - Ak
K K K_]k>] K_(]+1>k>XI;H
1 1 1
N ( - ) A
K—J7 " \k=] K=(J+1) k>;2+1 k
_ 1 1 g+

> 0.

So the difference (B9) is non-negative and equals zero when k = K. Thus, by Lemma 3, the

eigenvalues /\g ), ., )\g) undergo a MPS when ] rises.

(i) FixJ € {0,...,K} and define
1

{0 = g2 iiﬂLﬁ + Y AD

¢ =1 A](-” o e
foreach k € {1,...,K}. Then

1
N — 3 _ 2 i J0)
T A Kmm{tk .ke{l,...,K}}

from the proof of Proposition 2. But

-2
o)) R (E L
on o2 A0 ot

]

is strictly negative, from which it follows that rl/) is increasing in . ]

B2.7 Proof of Theorem 4
Our proof of Theorem 4 invokes the following Lemma:
Lemma B5. Fix | € {0,...,K}. Then )\gn, ., Ag) undergo a MPS when A4, ..., Ax undergo a MPS.
Proof. Fixk € {1,...,K}. By Lemma 3, the cumulative sum
min{k,J}
LA
j=1

does not fall when A4, ..., Ag undergo a MPS, while the tail sum

YA

i>]
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does not rise under the MPS. So the MPS does not lower

L - {Zi” TP R
=1 YA+ (k=DAg ifk>]
B { z}“j;{k'” A ifk<]
B A - KRy A itk >
and leaves it unchanged when k = K. The result follows from Lemma 3. O

Proof of Theorem 4. We prove (i) and (ii) separately:

(i) Fixn > 0. Now () is non-decreasing in J (by Lemma 5), so if 7D > my then 7U+D) > .
g y
Thus
(n>0:7Y >m} C{n>0:7U >}

and therefore n%) > ngoﬂ).

(ii) It suffices to show that ) does not fall when A, ..., Ag undergo a MPS. Then, since 7 is

increasing in 7 (by Lemma 5), the MPS expands {n > 0 : 7/) > 7y} and so cannot raise ngo).

But the argument used to prove Lemma B3 implies that 77/) does not fall when )t%] )., /\g)
undergo a MPS, which, by Lemma B5, happens when Ay, ..., Ax undergo a MPS. ]

B3 Claims in Appendix Sections A2 and A3
B3.1 Proof of Proposition Al
Let S’ be a superset of S. Then

V(6k)

E[V(0 | S)] + V(E[6k | S])

V(6| S)
E[V(0 | S,S") | S|+ V(E[6 | S,S]|S)
V(6| S,S)
V(b |S)

v

v

foreachk € {1,..., K}, where the first two equalities hold by the law of total variance, the inequal-
ities hold because the posterior variance of 6 is non-negative and non-random (by Lemma 2), and
the last equality holds because S’ is a superset of S. It follows that 0 < 7(S) < 7(S’), thereby
establishing (i) and (ii).

Now consider (iii). Differentiating the posterior variance matrix (15) with respect to 02 gives

g (s 1) (2 fers 26 (zs L
2vies) = <2 +05c)<805[z +05c]><z +05G>

u
1 1 1 1
= (g '+ = —X1G*+ G,
od ( T 02 T

u u u

Gz l4
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which is the sum of four matrices with strictly positive traces. Thus

tr(aiz V(o | 3)) >0

u

and therefore

on(S) 1. (9
<0
because traces are linear Operators. OJ

B3.2 Proof of Proposition A2
Our proof of Proposition A2 uses the following fact about rank-one updates of invertible matrices.

Lemma B6 (Sherman-Morrison formula). Let n > 1 be an integer, let A € R™™" be invertible, and
letu € R"andv € R". IfvT A" u # —1, then

= A luoT AT

T\ ~ _ 414 uv A

(A—Hw) =A TroTA 0
Proof. See Bartlett (1951).

Proof of Proposition A2. Suppose S contains a single observation and let w = w) for convenience.
Then, by Lemmas 2 and B6, we have

1 -1
= (2 '+ —ww’

V(o |S) ( +05ww>
Twwly

wlZw + 02

Thus

Kn(S) = tr(E - V(8| S))

i Tww's
-\ wlZw + o2
 w'Pw
- wltw + o2’
where the last equality holds by the linearity and cyclic property of matrix traces. Equation (A2)

follows. The inequalities (A3) follow from Proposition 1, as do the choices of w) that make %
and »x hold with equality. O
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B3.3 Proof of Proposition A3

Define g(z) = nz?/K(nz + Ko2) for all z > 0. Then g : (0,00) — R is convex. So if S is represen-

tative, then, by Lemma 3, its value
K

m(S) =} 8(A)

k=1
does not fall when A4, ..., Ax undergo a MPS. O

B3.4 Derivation of (A5)-(A7)

Derivation of (A5) and (A6). Let k > R. Now 6y, ...,0g, 0 are jointly normally distributed under
the agent’s prior, and so Lemma B1 implies that 6 is conditionally normally distributed with mean

E[6) | 6s] = E[6] + &; (6s — E[fs]) (B10)
and variance (A6) given 6. So
V(6 | S) = V(E[b | S,0s] | S) + E[V(6 | S,0s) | S]
= V(E[f | 0s] | ) + E[V(6 | 0s) | S]
=G V(0s | )G+ V(0 | bs),
where the first equality holds by the law of total variance, the second holds because 0y is con-
ditionally independent of S given 6, and the third uses (B10) and the non-randomness of (A6).

So
K

tr(V(6|S)) = ];V(f)k | S)
= VO )+ X (Ve | S)2+ V(o 0)). :
k=1 k>R

Derivation of (A7). Suppose 6 has prior variance (8). Then
V(0s) = (p1r1g + (1= p)Ir)0?

has inverse
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and so

X T
B V(s)a=| 1| V(os) '] :
2Rk YRk
= ot (=g (- 1= g 1k ) 0710
_ p*Ro?
14+p(R—-1)

because 151z = R. Substituting this expression and V (6;) = ¢? into (A6) yields (A7).

B3.5 Proof of Proposition A4

It suffices to prove (ii) and (iii), which together imply (i).
If Ay,..., Ak are equal, then Ay = A foreach k € {1,...,K} and so

1 K
Dy (P || PO)) = ) ) In(1)
k=1
—0,

thus establishing (ii). For (iii), consider the function g : (0,00) — R defined by

o(z) = In(A) gln(z)‘

This function is convex on its domain. So, by Lemma 3, the KL divergence
K
Di(P || PO)) = Y e(M)

k=1

from P to IP(©) does not fall when A4, ..., Ag undergo a MPS.
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