Let \(A\)
be the \(n\times n\)
matrix with \({ij}^\text{th}\)
entry \(A_{ij}=\min\{i,j\}\)
.
From a previous post, we know \(A\)
has a tridiagonal inverse \(A^{-1}\)
with \({ij}^\text{th}\)
entry1
$$\left[A^{-1}\right]_{ij}=\begin{cases} 2 & \text{if}\ i=j<n \\ 1 & \text{if}\ i=j=n \\ -1 & \text{if}\ \lvert i-j\rvert=1 \\ 0 & \text{otherwise}. \end{cases}$$
For example, if \(n=4\)
then
$$A=\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
has inverse
$$A^{-1}=\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
We can use our knowledge of \(A^{-1}\)
to eigendecompose \(A\)
.
To see how, let \(\{(\lambda_j,v_j)\}_{j=1}^n\)
be the eigenpairs of \(A^{-1}\)
.
Yueh (2005, Theorem 1) shows that the eigenvector \(v_j\in\mathbb{R}^n\)
corresponding to the \(j^\text{th}\)
eigenvalue
$$\lambda_j=2\left(1+\cos\left(\frac{2j\pi}{2n+1}\right)\right)$$
has \(i^\text{th}\)
component
$$[v_j]_i=\alpha\sin\left(\frac{2ij\pi}{2n+1}\right),$$
where \(\alpha\in\mathbb{R}\)
is an arbitrary scalar.
This vector has length
$$\begin{align} \lvert\vert v_j\rvert\rvert &\equiv \sqrt{\sum_{i=1}^n\left([v_j]_i\right)^2} \\ &= \sqrt{\sum_{i=1}^n\alpha^2\sin^2\left(\frac{2ij\pi}{2n+1}\right)} \\ &= \lvert\alpha\rvert\sqrt{\frac{2n+1}{4}}, \end{align}$$
where the last equality can be verified using Wolfram Alpha and proved using complex analysis.
So choosing \(\alpha=2/\sqrt{2n+1}\)
ensures that the eigenvectors \(v_1,v_2,\ldots,v_n\)
of \(A^{-1}\)
have unit length.
Then, by the spectral theorem, these vectors form an orthonormal basis for \(\mathbb{R}^n\)
.
As a result, the \(n\times n\)
matrix
$$V=\begin{bmatrix} v_1 & v_2 & \cdots & v_n\end{bmatrix}$$
with \({ij}^\text{th}\)
entry \(V_{ij}=[v_j]_i\)
is orthogonal.
Moreover, letting \(\Lambda\)
be the \(n\times n\)
diagonal matrix with \({ii}^\text{th}\)
entry \(\Lambda_{ii}=\lambda_i\)
yields the eigendecomposition
$$\begin{align} A^{-1} &= V\Lambda V^T \\ &= \sum_{j=1}^n\lambda_jv_jv_j^T \end{align}$$
of \(A^{-1}\)
.
It follows from the orthogonality of \(V\)
that
$$\begin{align} A &= \left(V\Lambda V^T\right)^{-1} \\ &= V\Lambda^{-1} V^T \\ &= \sum_{j=1}^n\frac{1}{\lambda_j}v_jv_j^T \end{align}$$
is the eigendecomposition of \(A\)
.
Thus \(A\)
and \(A^{-1}\)
have the same eigenvectors, but the eigenvalues of \(A\)
are the reciprocated eigenvalues of \(A^{-1}\)
.
Here’s one scenario in which this decomposition is useful:
Suppose I observe data \(\mathcal{D}=\{(x_i,y_i)\}_{i=1}^n\)
generated by the process
$$\DeclareMathOperator{\Cov}{Cov} \DeclareMathOperator{\E}{E} \DeclareMathOperator{\Var}{Var} \newcommand{\veps}{\sigma_\epsilon^2} \newcommand{\R}{\mathbb{R}} \renewcommand{\epsilon}{\varepsilon} \begin{align} y_i &= f(x_i)+\epsilon_i \\ \epsilon_i &\overset{\text{iid}}{\sim} \mathcal{N}(0,\veps), \end{align}$$
where \(\{f(x)\}_{x\ge0}\)
is a sample path of a standard Wiener process and where the errors \(\epsilon_i\)
are iid normally distributed with variance \(\veps\)
.
I use these data to estimate \(f(x)\)
for some \(x\ge0\)
.2
My estimator \(\hat{f}(x)\equiv\E[f(x)\mid\mathcal{D}]\)
has conditional variance
$$\Var\left(\hat{f}(x)\mid\mathcal{D}\right)=\Var(f(x))-w^T\Sigma^{-1} w,$$
where \(w\in\R^n\)
is the vector with \(i^\text{th}\)
component \(w_i=\Cov(y_i,f(x))\)
and where \(\Sigma\in\R^{n\times n}\)
is the covariance matrix with \({ij}^\text{th}\)
entry \(\Sigma_{ij}=\Cov(y_i,y_j)\)
.
If \(x_i=i\)
for each \(i\in\{1,2,\ldots,n\}\)
, then we can express this matrix as the sum
$$\Sigma=A+\veps I,$$
where \(A\)
is the \(n\times n\)
matrix defined above and where \(I\)
is the \(n\times n\)
identity matrix.
But we know \(A=V\Lambda^{-1}V^T\)
.
We also know \(I=VV^T\)
, since \(V\)
is orthogonal.
It follows that
$$\begin{align*} \Sigma^{-1} &= \left(V\Lambda^{-1}V^T+\veps VV^T\right)^{-1} \\ &= V\left(\Lambda+\frac{1}{\veps}I\right)V^T, \end{align*}$$
from which we can derive a (relatively) closed-form expression for the conditional variance of \(\hat{f}(x)\)
given \(\mathcal{D}\)
.
-
One can verify this claim by showing
\(AA^{-1}\)
equals the identity matrix. ↩︎ -
I discuss this estimation problem in a recent paper. ↩︎